Ascorbic Acid: Therapeutic Implications In Neurodegenerative Diseases

Main Article Content

Rajen Dey
Manojit Bysack

Abstract

Ascorbic acid, or vitamin C, is a non-enzymatic antioxidant that dissolves in water. According to research, depending on its dose, vitamin C may have immunomodulatory and antibacterial effects. Ascorbic acid regulates the hypothalamic-pituitary-adrenal (HPA) axis in a critical manner. Therefore, research into ascorbic acid's potential role in the neuro-endocrine interaction is necessary to control neurodegenerative illnesses and behavioral abnormalities. Ascorbate, a reduced form of vitamin C, can scavenge reactive oxygen species (ROS) and nitrogen oxides (NO) produced during synaptic activity and neuronal metabolism in brain tissue. According to a number of studies, ascorbic acid effectively regulates redox balance by increasing the activity of natural antioxidant enzymes such as SOD, CAT, GRx, and GPx. Additionally, it performs crucial roles in protein aggregation, which is unquestionably vital in the pathophysiology of neurodegenerative illnesses including multiple sclerosis, Alzheimer's, Parkinson's, and Huntington's disorders. It's interesting to note that a mouse model showed that lower brain ascorbate could cause oxidative stress at a young age, hastening the onset of pathological alterations such Aβ deposition and the ensuing cognitive deficiencies. In order to maintain synaptic activity, ascorbic acid can change the metabolism of the brain. Thus, based on the fragmented evidence, it may be inferred that redox balance caused by ascorbic acid may serve as a possible target for modulating neurodegeneration, neuroinflammation, and cognitive deficits.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rajen Dey, & Manojit Bysack. (2024). Ascorbic Acid: Therapeutic Implications In Neurodegenerative Diseases. Journal of Advanced Zoology, 45(2), 1554–1558. https://doi.org/10.53555/jaz.v45i2.4450
Section
Articles
Author Biographies

Rajen Dey

Department of Medical Laboratory Technology,School of Allied Health Sciences, Swami Vivekananda University, Telinipara, Barasat-Barrackpore Rd, Bara Kanthalia, West Bengal - 700121, India.

Manojit Bysack

Department of Medical Laboratory Technology, School of Allied Health Sciences, Swami Vivekananda University, Telinipara, Barasat-Barrackpore Rd, Bara Kanthalia, West Bengal - 700121, India.

References

Du, J., Cullen, J. J., & Buettner, G. R. (2012). Ascorbic acid: chemistry, biology and the treatment of cancer. Biochimica et biophysica acta, 1826(2), 443–457.

Lachapelle, M. Y., & Drouin, G. (2011). Inactivation dates of the human and guinea pig vitamin C genes. Genetica, 139(2), 199–207.

Nishikimi, M., Kawai, T., & Yagi, K. (1992). Guinea pigs possess a highly mutated gene for L-gulono-gamma-lactone oxidase, the key enzyme for L-ascorbic acid biosynthesis missing in this species. The Journal of biological chemistry, 267(30), 21967–21972.

Himmelreich, U., Drew, K. N., Serianni, A. S., & Kuchel, P. W. (1998). 13C NMR studies of vitamin C transport and its redox cycling in human erythrocytes. Biochemistry, 37(20), 7578–7588.

Castro, M. A., Beltrán, F. A., Brauchi, S., & Concha, I. I. (2009). A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid. Journal of neurochemistry, 110(2), 423–440.

Harrison, F. E., & May, J. M. (2009). Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free radical biology & medicine, 46(6), 719–730.

Travica, N., Ried, K., Hudson, I., Sali, A., Scholey, A., & Pipingas, A. (2020). The Contribution of Plasma and Brain Vitamin C on Age and Gender-Related Cognitive Differences: A Mini-Review of the Literature. Frontiers in integrative neuroscience, 14, 47.

Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 21(10), 1133–1145.

Vona, R., Pallotta, L., Cappelletti, M., Severi, C., & Matarrese, P. (2021). The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidants (Basel, Switzerland), 10(2), 201.

Heafield, M. T., Fearn, S., Steventon, G. B., Waring, R. H., Williams, A. C., & Sturman, S. G. (1990). Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson's and Alzheimer's disease. Neuroscience letters, 110(1-2), 216–220.

Halliwell B. (2006). Oxidative stress and neurodegeneration: where are we now?. Journal of neurochemistry, 97(6), 1634–1658.

Rodriguez, K. A., Wywial, E., Perez, V. I., Lambert, A. J., Edrey, Y. H., Lewis, K. N., Grimes, K., Lindsey, M. L., Brand, M. D., & Buffenstein, R. (2011). Walking the oxidative stress tightrope: a perspective from the naked mole-rat, the longest-living rodent. Current pharmaceutical design, 17(22), 2290–2307.

Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., & Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical interventions in aging, 13, 757–772.

Bagyinszky, E., Giau, V. V., Shim, K., Suk, K., An, S. S. A., & Kim, S. (2017). Role of inflammatory molecules in the Alzheimer's disease progression and diagnosis. Journal of the neurological sciences, 376, 242–254.

Murakami, K., Murata, N., Ozawa, Y., Kinoshita, N., Irie, K., Shirasawa, T., & Shimizu, T. (2011). Vitamin C restores behavioral deficits and amyloid-β oligomerization without affecting plaque formation in a mouse model of Alzheimer's disease. Journal of Alzheimer's disease : JAD, 26(1), 7–18.

Hamid, M., Mansoor, S., Amber, S., & Zahid, S. (2022). A quantitative meta-analysis of vitamin C in the pathophysiology of Alzheimer's disease. Frontiers in aging neuroscience, 14, 970263.

Wang, C., Liu, L., Zhang, L., Peng, Y., & Zhou, F. (2010). Redox reactions of the α-synuclein-Cu(2+) complex and their effects on neuronal cell viability. Biochemistry, 49(37), 8134–8142.

Fernandes, J. T., Tenreiro, S., Gameiro, A., Chu, V., Outeiro, T. F., & Conde, J. P. (2014). Modulation of alpha-synuclein toxicity in yeast using a novel microfluidic-based gradient generator. Lab on a chip, 14(20), 3949–3957.

Stefanis L. (2012). α-Synuclein in Parkinson's disease. Cold Spring Harbor perspectives in medicine, 2(2), a009399.

Ide, K., Yamada, H., Umegaki, K., Mizuno, K., Kawakami, N., Hagiwara, Y., Matsumoto, M., Yoshida, H., Kim, K., Shiosaki, E., Yokochi, T., & Harada, K. (2015). Lymphocyte vitamin C levels as potential biomarker for progression of Parkinson's disease. Nutrition (Burbank, Los Angeles County, Calif.), 31(2), 406–408.

Hughes, K. C., Gao, X., Kim, I. Y., Rimm, E. B., Wang, M., Weisskopf, M. G., Schwarzschild, M. A., & Ascherio, A. (2016). Intake of antioxidant vitamins and risk of Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society, 31(12), 1909–1914.

Rebec, G. V., Barton, S. J., & Ennis, M. D. (2002). Dysregulation of ascorbate release in the striatum of behaving mice expressing the Huntington's disease gene. The Journal of neuroscience : the official journal of the Society for Neuroscience, 22(2), RC202.

Rebec, G. V., Conroy, S. K., & Barton, S. J. (2006). Hyperactive striatal neurons in symptomatic Huntington R6/2 mice: variations with behavioral state and repeated ascorbate treatment. Neuroscience, 137(1), 327–336.

Acuña, A. I., Esparza, M., Kramm, C., Beltrán, F. A., Parra, A. V., Cepeda, C., Toro, C. A., Vidal, R. L., Hetz, C., Concha, I. I., Brauchi, S., Levine, M. S., & Castro, M. A. (2013). A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington's disease in mice. Nature communications, 4, 2917.

Moretti, M., Fraga, D. B., & Rodrigues, A. L. S. (2017). Preventive and therapeutic potential of ascorbic acid in neurodegenerative diseases. CNS neuroscience & therapeutics, 23(12), 921–929.

Doseděl, M., Jirkovský, E., Macáková, K., Krčmová, L. K., Javorská, L., Pourová, J., Mercolini, L., Remião, F., Nováková, L., Mladěnka, P., & On Behalf Of The Oemonom (2021). Vitamin C-Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients, 13(2), 615.

Eldridge, C. F., Bunge, M. B., Bunge, R. P., & Wood, P. M. (1987). Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. The Journal of cell biology, 105(2), 1023–1034.

Babri, S., Mehrvash, F., Mohaddes, G., Hatami, H., & Mirzaie, F. (2015). Effect of intrahippocampal administration of vitamin C and progesterone on learning in a model of multiple sclerosis in rats. Advanced pharmaceutical bulletin, 5(1), 83–87.

Hasanein, P., & Shahidi, S. (2010). Effects of combined treatment with vitamins C and E on passive avoidance learning and memory in diabetic rats. Neurobiology of learning and memory, 93(4), 472–478.

Lee, L., Kang, S. A., Lee, H. O., Lee, B. H., Jung, I. K., Lee, J. E., & Hoe, Y. S. (2001). Effect of supplementation of vitamin E and vitamin C on brain acetylcholinesterase activity and neurotransmitter levels in rats treated with scopolamine, an inducer of dementia. Journal of nutritional science and vitaminology, 47(5), 323–328.

Ambali, S. F., Idris, S. B., Onukak, C., Shittu, M., & Ayo, J. O. (2010). Ameliorative effects of vitamin C on short-term sensorimotor and cognitive changes induced by acute chlorpyrifos exposure in Wistar rats. Toxicology and industrial health, 26(9), 547–558.

Moretti, M., Colla, A., de Oliveira Balen, G., dos Santos, D. B., Budni, J., de Freitas, A. E., Farina, M., & Severo Rodrigues, A. L. (2012). Ascorbic acid treatment, similarly to fluoxetine, reverses depressive-like behavior and brain oxidative damage induced by chronic unpredictable stress. Journal of psychiatric research, 46(3), 331–340.

Moretti, M., Budni, J., Dos Santos, D. B., Antunes, A., Daufenbach, J. F., Manosso, L. M., Farina, M., & Rodrigues, A. L. (2013). Protective effects of ascorbic acid on behavior and oxidative status of restraint-stressed mice. Journal of molecular neuroscience: MN, 49(1), 68–79.

Most read articles by the same author(s)