Genetic Engineering in Livestock: Zoology's Role in Improving Animal Health, Productivity, and Sustainability in Agriculture
DOI:
https://doi.org/10.53555/jaz.v44iS7.2842Keywords:
Genetic Engineering, Animal Health, CRISPR-Cas9, Sustainability in AgricultureAbstract
This review paper provides an overview of the advancements and applications of genetic engineering techniques in livestock, providing an in-depth look at how genetic engineering has improved animal health, productivity, and sustainability in agriculture. In the introduction, genetic engineering is presented as an important tool for improving animal health, productivity, and sustainability in agriculture. Several genetic engineering tools and methods are discussed in the paper, including transgenic technology and genome editing techniques such as CRISPR-Cas9. A special focus is placed on the application of genetic engineering to livestock, specifically disease resistance and control, improved productivity, and environmental sustainability. Additionally, the review discusses the role of genetic engineering in improving animal health by introducing disease-resistant genes and eliminating disease-causing genes. Genetically engineered vaccines and enhanced biosecurity measures are also discussed in detail as well. A further examination of how genetic engineering can enhance livestock productivity is also included in the review, including the introduction of growth-promoting genes and the manipulation of metabolic pathways. As part of the program, nutritional content and allergenicity can also be enhanced in milk and meat products. As well as highlighting the importance of genetic engineering in promoting sustainable agriculture, the review also discusses how genetic engineering can reduce environmental impacts on agriculture. It is intended to reduce methane emissions and nitrogen and phosphorus waste, as well as optimize resources and land use through improved feed conversion efficiency and disease resistance in order to reduce the need for antibiotics. In this article, ethical and regulatory issues are discussed, including ethical concerns, current regulations, and guidelines for genetic engineering in livestock. At the conclusion of the review, future directions and challenges are discussed, emphasizing the need for continued research and responsible implementation in order to improve animal health, productivity, and sustainability in agriculture.
Downloads
References
(2022). Gene editing and agrifood systems.. https://doi.org/10.4060/cc3579en
(2022). Risks and risk assessment of gm crops with advanced
modification technologies. National Journal of Biological Sciences, 3(1), 35-57. https://doi.org/ 10.37605/ v3i1/4
Af, F., Mattachini, G., Lovarelli, D., Riva, E., & Provolo, G. (2020). Technical, economic, and environmental assessment of a collective integrated treatment system for energy recovery and nutrient removal from livestock manure. Sustainability, 12(7), 2756. https://doi.org/10.3390/su12072756
Afshar, L., Aghayan, H., Sadighi, J., Arjmand, B., Hashemi, S., Basiri, M., … & Baharvand, H. (2020). Ethics of research on stem cells and regenerative medicine: ethical guidelines in the islamic republic of iran. Stem Cell Research & Therapy, 11(1). https://doi.org/10.1186/s13287-020-01916-z
Alemneh, T. (2020). Genetic engineering and its application in animal breeding: review. Archives in Biomedical Engineering & Biotechnology, 4(4). https://doi.org/10.33552/abeb.2020.04.000595
Alemneh, T. (2020). Genetic engineering and its application in animal breeding: review. Archives in Biomedical Engineering & Biotechnology, 4(4). https://doi.org/10.33552/abeb.2020.04.000595
Alemneh, T. (2020). Genetic engineering and its application in animal breeding: review. Archives in Biomedical Engineering & Biotechnology, 4(4). https://doi.org/10.33552/abeb.2020.04.000595
Alemneh, T. (2020). Genetic engineering and its application in animal breeding: review. Archives in Biomedical Engineering & Biotechnology, 4(4). https://doi.org/10.33552/abeb.2020.04.000595
Alemneh, T. (2020). Genetic engineering and its application in animal breeding: review. Archives in Biomedical Engineering & Biotechnology, 4(4). https://doi.org/10.33552/abeb.2020.04.000595
Alubaidi, G. (2020). Virus-like particles‑application in nano vaccines: a review. International Journal of Drug Delivery Technology, 10(03), 366-368. https://doi.org/10.25258/ijddt.10.3.10
Austin, B., Ongalo, U., & Kipkemoi, N. (2020). Influence of selected socio-economic factors on the adoption of sustainable agriculture technologies in maize farming in mzimba south, malawi. International Journal of Agriculture and Environmental Research, 06(02), 102-124. https://doi.org/10. 46609/ ijaer. 2020.v06i02.001
Beauchemin, K., Ungerfeld, E., Eckard, R., & Wang, M. (2020). Review: fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal, 14, s2-s16. https://doi.org/ 10.1017/s1751731119003100
Benfica, L., Sakamoto, L., Magalhães, A., Oliveira, M., Albuquerque, L., Cavalheiro, R., … & Mercadante, M. (2020). Genetic association among feeding behavior, feed efficiency, and growth traits in growing indicine cattle. Journal of Animal Science, 98(11). https://doi.org/10.1093/jas/skaa350
Beşen, T. and Olhan, E. (2019). Assessment of agricultural sustainability in sarikum lake basin, sinop province, turkey. Tarım Bilimleri Dergisi. https://doi.org/10.15832/ankutbd.547463
Bikaako, W., Kabahango, P., Mugabi, K., Yawe, A., Stallon, K., Kyewalabye, E., … & Amuguni, H. (2022). Breaking institutional barriers to enhance women’s participation in and benefit from the peste des petits ruminants and newcastle disease vaccine value chains for sembabule district of uganda. Plos One, 17(10), e0270518. https://doi.org/10.1371/journal.pone.0270518
Bishop, T. and Eenennaam, A. (2020). Genome editing approaches to augment livestock breeding programs. Journal of Experimental Biology, 223(Suppl_1). https://doi.org/10.1242/jeb.207159
Bishop, T. and Eenennaam, A. (2020). Genome editing approaches to augment livestock breeding programs. Journal of Experimental Biology, 223(Suppl_1). https://doi.org/10.1242/jeb.207159
Bishop, T. and Eenennaam, A. (2020). Genome editing approaches to augment livestock breeding programs. Journal of Experimental Biology, 223(Suppl_1). https://doi.org/10.1242/jeb.207159
Bo, P., Dong, Y., Zhang, R., Htet, M., & Hai, J. (2022). Optimization of alfalfa-based mixed cropping with winter wheat and ryegrass in terms of forage yield and quality traits. Plants, 11(13), 1752. https://doi.org/10.3390/plants11131752
Bobbo, T., Penasa, M., Rossoni, A., & Cassandro, M. (2020). Short communication: genetic aspects of milk urea nitrogen and new indicators of nitrogen efficiency in dairy cows. Journal of Dairy Science, 103(10), 9207-9212. https://doi.org/10.3168/jds.2020-18445
Bobis, O., Bonta, V., Marghitas, L., Dezmirean, D., Pașca, C., Urcan, A., … & Moise, A. (2019). Does genetic engineering influence the nutritional value of plums? case study on two conventional and one genetically engineered plum fruits. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Animal Science and Biotechnologies, 76(1), 51. https://doi.org/ 10.15835/ buasvmcn-asb:2019.0003
Checcucci, A., Trevisi, P., Luise, D., Modesto, M., Blasioli, S., Braschi, I., … & Mattarelli, P. (2020). Exploring the animal waste resistome: the spread of antimicrobial resistance genes through the use of livestock manure. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01416
Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). Crispr/cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 70(1), 667-697. https://doi.org/ 10.1146/annurev-arplant-050718-100049
Chirinda, N., Peters, M., Burkart, S., Notenbaert, A., & Hoek, R. (2022). Editorial: realizing livelihood and environmental benefits of forages in tropical crop-tree-livestock systems. Frontiers in Sustainable Food Systems, 6. https://doi.org/10.3389/fsufs.2022.1056522
Costa, A., Franzoi, M., Visentin, G., Goi, A., Marchi, M., & Penasa, M. (2021). The concentrations of immunoglobulins in bovine colostrum determined by the gold standard method are genetically correlated with their near-infrared prediction. Genetics Selection Evolution, 53(1). https://doi.org/10.1186/s12711-021-00681-8
Deng, S., Liang, H., Chen, P., Li, Y., Li, Z., Fan, S., … & Chen, J. (2022). Viral vector vaccine development and application during the covid-19 pandemic. Microorganisms, 10(7), 1450. https://doi.org/ 10.3390/microorganisms10071450
Deng, S., Liang, H., Chen, P., Li, Y., Li, Z., Fan, S., … & Chen, J. (2022). Viral vector vaccine development and application during the covid-19 pandemic. Microorganisms, 10(7), 1450. https://doi.org/ 10.3390/microorganisms10071450
Dewi, Y., Ismail, A., Akramullah, M., Bouk, G., Kamlasi, Y., Sinabang, M., … & Soares, D. (2022). Effect of corn waste fermentation as livestock feed on fiber fraction content. International Journal of Environment Agriculture and Biotechnology, 7(6), 108-112. https://doi.org/10.22161/ijeab.76.12
Diniz, W., Ward, A., McCarthy, K., Kassetas, C., Baumgaertner, F., Reynolds, L., … & Dahlen, C. (2023). Periconceptual maternal nutrition affects fetal liver programming of energy- and lipid-related genes. Animals, 13(4), 600. https://doi.org/10.3390/ani13040600
Dione, M., Dohoo, I., Ndiwa, N., Poole, E., Ouma, E., Amia, W., … & Wieland, B. (2020). Impact of participatory training of smallholder pig farmers on knowledge, attitudes and practices regarding biosecurity for the control of african swine fever in uganda. Transboundary and Emerging Diseases, 67(6), 2482-2493. https://doi.org/10.1111/tbed.13587
Dong, B., Song, C., Li, H., Lin, A., Wang, J., & Li, W. (2022). Life cycle assessment on the environmental impacts of different pig manure management techniques. International Journal of Agricultural and Biological Engineering, 15(3), 78-84. https://doi.org/10.25165/j.ijabe.20221503.6212
Dong, W., Yang, J., Liu, S., Ning, C., Ding, X., Wang, W., … & Jiang, L. (2021). Integrative analysis of genome‐wide dna methylation and gene expression profiles reveals important epigenetic genes related to milk production traits in dairy cattle. Journal of Animal Breeding and Genetics, 138(5), 562-573. https://doi.org/10.1111/jbg.12530
Dopelt, K., Radon, P., & Davidovitch, N. (2019). Environmental effects of the livestock industry: the relationship between knowledge, attitudes, and behavior among students in israel. International Journal of Environmental Research and Public Health, 16(8), 1359. https://doi.org/10.3390/ijerph16081359
Douphrate, D. (2021). Animal agriculture and the one health approach. Journal of Agromedicine, 26(1), 85-87. https://doi.org/10.1080/1059924x.2021.1849136
Dua, S., Bajwa, K., Prashar, A., Bansal, S., Beniwal, M., Kumar, P., … & Kumar, D. (2021). Empowering of reproductive health of farm animals through genome editing technology. JRHM, 2, 4. https://doi.org/10.25259/jrhm_17_2020
Dvergedal, H., Ødegård, J., Øverland, M., Mydland, L., & Klemetsdal, G. (2019). Selection for feed efficiency in atlantic salmon using individual indicator traits based on stable isotope profiling. Genetics Selection Evolution, 51(1). https://doi.org/10.1186/s12711-019-0455-9
Eaton, S., Murdoch, F., Rzechorzek, N., Thompson, G., Hartley, C., Blacklock, B., … & Wishart, T. (2022). Modelling neurological diseases in large animals: criteria for model selection and clinical assessment. Cells, 11(17), 2641. https://doi.org/10.3390/cells11172641
Eaton, S., Murdoch, F., Rzechorzek, N., Thompson, G., Hartley, C., Blacklock, B., … & Wishart, T. (2022). Modelling neurological diseases in large animals: criteria for model selection and clinical assessment. Cells, 11(17), 2641. https://doi.org/10.3390/cells11172641
Eenennaam, A., Silva, F., Trott, J., & Zilberman, D. (2021). Genetic engineering of livestock: the opportunity cost of regulatory delay. Annual Review of Animal Biosciences, 9(1), 453-478. https://doi.org/10.1146/annurev-animal-061220-023052
Eenennaam, A., Wells, K., & Murray, J. (2019). Proposed u.s. regulation of gene-edited food animals is not fit for purpose. NPJ Science of Food, 3(1). https://doi.org/10.1038/s41538-019-0035-y
Ejeromedoghene, O., Tesi, J., Uyanga, V., Adebayo, A., Nwosisi, M., Tesi, G., … & Akinyeye, R. (2020). Food security and safety concerns in animal production and public health issues in africa: a perspective of covid-19 pandemic era. Ethics Medicine and Public Health, 15, 100600. https://doi.org/10. 1016/ j.jemep.2020.100600
Fan, J., Liao, Y., Zhang, M., Liu, C., Li, Z., Li, Y., … & Chen, J. (2021). Anti-classical swine fever virus strategies. Microorganisms, 9(4), 761. https://doi.org/10.3390/microorganisms9040761
Fathi, M., Al-Homidan, I., Ebeid, T., Galal, A., & Abou-Emera, O. (2019). Assessment of residual feed intake and its relevant measurements in two varieties of japanese quails (coturnixcoturnix japonica) under high environmental temperature. Animals, 9(6), 299. https://doi.org/10.3390/ani9060299
Fesseha, H. (2020). Genetic engineering application in animal breeding-review. Biomedical Journal of Scientific & Technical Research, 32(4). https://doi.org/10.26717/bjstr.2020.32.005284
Gannaway, T., Majyambere, D., Kabarungi, M., Mukamana, L., Niyitanga, F., Schurer, J., … & Amuguni, H. (2022). Using outcome mapping to mobilize critical stakeholders for a gender responsive rift valley fever and newcastle disease vaccine value chain in rwanda. Frontiers in Global Women S Health, 3. https://doi.org/ 10.3389/fgwh.2022.732292
Gao, G., Gao, N., Li, S., Kuang, W., Zhu, L., Yu, W., … & Zhao, Y. (2021). Genome-wide association study of meat quality traits in a three-way crossbred commercial pig population. Frontiers in Genetics, 12. https://doi.org/10.3389/fgene.2021.614087
Getiso, A. and Mijena, D. (2021). Feeding and nutritional strategies to reduce methane emission from large ruminants: review. Journal of Aquaculture & Livestock Production, 1-9. https://doi.org/ 10.47363/ jalp/2021(2)109
Gonzalez, D., Trujillo-González, J., Gonzalez, F., & Gelvez-Pinzon, K. (2022). Carbon sink project: regenerative radial soil system for livestock in the native savanna of vichada, colombia.. https://doi.org/10.21203/rs.3.rs-2298403/v1
Guo, Q., Huang, L., Bai, H., Wang, Z., Bi, Y., Chen, G., … & Chang, G. (2022). Genome-wide association study of potential meat quality trait loci in ducks. Genes, 13(6), 986. https://doi.org/ 10.3390/ genes13060986
Hackett, P. (2020). Regulatory issues for genetically modified animals. Frontiers of Agricultural Science and Engineering, 7(2), 188. https://doi.org/10.15302/j-fase-2019307
Haileselassie, K., Kebede, S., Letta, M., & Gebremichael, S. (2022). Optimization of alternative breeding schemes for the genetic improvement of common tigray highland sheep in northern ethiopia. Genetics Selection Evolution, 54(1). https://doi.org/10.1186/s12711-022-00755-1
Hatab, A., Krautscheid, L., & Boqvist, S. (2021). Covid-19, livestock systems and food security in developing countries: a systematic review of an emerging literature. Pathogens, 10(5), 586. https://doi.org/ 10.3390/pathogens10050586
Holman, L. (2019). Evolutionary simulations ofz-linked suppression gene drives. Proceedings of the Royal Society B Biological Sciences, 286(1912), 20191070. https://doi.org/10.1098/rspb.2019.1070
Horrillo, A., Gaspar, P., & Escribano, M. (2020). Organic farming as a strategy to reduce carbon footprint in dehesa agroecosystems: a case study comparing different livestock products. Animals, 10(1), 162. https://doi.org/10.3390/ani10010162
Horrillo, A., Gaspar, P., Mesias, F., Elghannam, A., & Escribano, M. (2019). Understanding the barriers and exploring the possibilities of the organic livestock sector in dehesa agroforestry systems: a multi-actor approach for effective diagnosis. Renewable Agriculture and Food Systems, 35(6), 663-677. https://doi.org/10.1017/s1742170519000334
Hu, G., Do, D., Gray, J., & Miar, Y. (2020). Selection for favorable health traits: a potential approach to cope with diseases in farm animals. Animals, 10(9), 1717. https://doi.org/10.3390/ani10091717
Hulst, A., Jong, M., & Bijma, P. (2021). Why genetic selection to reduce the prevalence of infectious diseases is way more promising than currently believed. Genetics, 217(4). https://doi.org/10 .1093/ genetics/iyab024
Islam, M., Rony, S., Rahman, B., Cinar, M., Villena, J., Uddin, M., … & Kitazawa, H. (2020). Improvement of disease resistance in livestock: application of immunogenomics and crispr/cas9 technology. Animals, 10(12), 2236. https://doi.org/10.3390/ani10122236
Islam, M., Rony, S., Rahman, B., Cinar, M., Villena, J., Uddin, M., … & Kitazawa, H. (2020). Improvement of disease resistance in livestock: application of immunogenomics and crispr/cas9 technology. Animals, 10(12), 2236. https://doi.org/10.3390/ani10122236
Juárez, M., Lam, S., Bohrer, B., Dugan, M., Vahmani, P., Aalhus, J., … & Segura, J. (2021). Enhancing the nutritional value of red meat through genetic and feeding strategies. Foods, 10(4), 872. https://doi.org/10.3390/foods10040872
KARAKURT, C., Teke, B., Bülbül, B., & ALKOYAK, K. (2023). Pandemics and ecological animal husbandry. Livestock Studies, 63(1), 1-10. https://doi.org/10.46897/livestockstudies.1173698
Kalds, P., Zhou, S., Cai, B., Liu, J., Wang, Y., Petersen, B., … & Chen, Y. (2019). Sheep and goat genome engineering: from random transgenesis to the crispr era. Frontiers in Genetics, 10. https://doi.org/ 10.3389/fgene.2019.00750
Kalds, P., Zhou, S., Cai, B., Liu, J., Wang, Y., Petersen, B., … & Chen, Y. (2019). Sheep and goat genome engineering: from random transgenesis to the crispr era. Frontiers in Genetics, 10. https://doi.org/ 10.3389/fgene.2019.00750
Kalds, P., Zhou, S., Huang, S., Gao, Y., Wang, X., & Chen, Y. (2023). When less is more: targeting the myostatin gene in livestock for augmenting meat production. Journal of Agricultural and Food Chemistry, 71(10), 4216-4227. https://doi.org/10.1021/acs.jafc.2c08583
Karlsson, J., Tidåker, P., & Röös, E. (2022). Smaller farm size and ruminant animals are associated with increased supply of non-provisioning ecosystem services. Ambio, 51(9), 2025-2042. https://doi.org/ 10.1007/s13280-022-01726-y
Ketter, E. and Randall, G. (2019). Virus impact on lipids and membranes. Annual Review of Virology, 6(1), 319-340. https://doi.org/10.1146/annurev-virology-092818-015748
Kg, D. (2019). Significance of symbiotic associations in sustainable agriculture and animal nutrition. Novel Techniques in Nutrition & Food Science, 3(2). https://doi.org/10.31031/ntnf.2019.03.000560
Khan, M., Ma, Y., Ma, J., Xiao, J., Liu, Y., Liu, S., … & Cao, Z. (2021). Association of dgat1 with cattle, buffalo, goat, and sheep milk and meat production traits. Frontiers in Veterinary Science, 8. https://doi.org/ 10.3389/fvets.2021.712470
Khan, R., Li, A., & Raza, S. (2023). Editorial: genetic regulation of meat quality traits in livestock species. Frontiers in Genetics, 13. https://doi.org/10.3389/fgene.2022.1092562
Kim, G., Lee, J., Song, S., Kim, S., Han, J., Shin, S., … & Park, T. (2020). Generation of myostatin‐knockout chickens mediated by d10a‐cas9 nickase. The Faseb Journal, 34(4), 5688-5696. https://doi.org/10.1096/fj.201903035r
Klinger, B. and Schnieke, A. (2021). Twenty-five years after dolly – how far have we come?. Reproduction. https://doi.org/10.1530/rep-20-0652
Kues, W., Kumar, D., & Selokar, N. (2022). Applications of genome editing tools in stem cells towards regenerative medicine: an update. Current Stem Cell Research & Therapy, 17(3), 267-279. https://doi.org/10.2174/1574888x16666211124095527
Kumar, D. and Kues, W. (2022). Genome engineering in livestock: recent advances and regulatory framework. Animal Reproduction Update, 3(1), 14-30. https://doi.org/10.48165/aru.2023.3.1.5
Kumar, D. and Kues, W. (2022). Genome engineering in livestock: recent advances and regulatory framework. Animal Reproduction Update, 3(1), 14-30. https://doi.org/10.48165/aru.2023.3.1.5
Kumar, D. and Kues, W. (2022). Genome engineering in livestock: recent advances and regulatory framework. Animal Reproduction Update, 3(1), 14-30. https://doi.org/10.48165/aru.2023.3.1.5
Lebret, A., Berton, P., Normand, V., Messager, I., Robert, N., Bouchet, F., … & Boulbria, G. (2021). Prrsv detection by qpcr in processing fluids and serum samples collected in a positive stable breeding herd following mass vaccination of sows with a modified live vaccine. Porcine Health Management, 7(1). https://doi.org/10.1186/s40813-020-00186-8
Lee, G., Pak, S., Lee, K., & Hong, S. (2019). Movement-based biosecurity zones for control of highly infectious animal diseases: application of community detection analysis to a livestock vehicle movement network. Sustainability, 11(6), 1642. https://doi.org/10.3390/su11061642
Lee, G., Pak, S., Lee, K., & Hong, S. (2019). Movement-based biosecurity zones for control of highly infectious animal diseases: application of community detection analysis to a livestock vehicle movement network. Sustainability, 11(6), 1642. https://doi.org/10.3390/su11061642
Lee, J., Kim, D., & Lee, K. (2020). Muscle hyperplasia in japanese quail by single amino acid deletion in mstn propeptide. International Journal of Molecular Sciences, 21(4), 1504. https://doi.org/ 10.3390/ijms21041504
Li, F., Hitch, T., Chen, Y., Creevey, C., & Guan, L. (2019). Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle. Microbiome, 7(1). https://doi.org/10.1186/s40168-019-0618-5
Li, J., Zhang, S., Gu, X., Xie, J., Zhu, X., Wang, Y., & Shan, T. (2022). Effects of alfalfa levels on carcass traits, meat quality, fatty acid composition, amino acid profile, and gut microflora composition of heigai pigs. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.975455
Liu, L., Zhou, J., Chen, C., Zhang, J., Wan, W., Tian, J., & Gu, Y. (2020). Gwas-based identification of new loci for milk yield, fat, and protein in holstein cattle. Animals, 10(11), 2048. https://doi.org/ 10.3390/ani10112048
Liu, Y., Xie, Z., Li, Y., Song, Y., Di, D., Liu, J., & Chen, H. (2022). Evaluation of an i177l gene-based five-gene-deleted african swine fever virus as a live attenuated vaccine in pigs. Emerging Microbes & Infections, 12(1). https://doi.org/10.1080/22221751.2022.2148560
Liu, Z., Wu, T., Xiang, G., Wang, H., Wang, B., Zheng, F., & Li, K. (2022). Enhancing animal disease resistance, production efficiency, and welfare through precise genome editing. International Journal of Molecular Sciences, 23(13), 7331. https://doi.org/10.3390/ijms23137331
Liu, Z., Wu, T., Xiang, G., Wang, H., Wang, B., Zheng, F., & Li, K. (2022). Enhancing animal disease resistance, production efficiency, and welfare through precise genome editing. International Journal of Molecular Sciences, 23(13), 7331. https://doi.org/10.3390/ijms23137331
Liu, Z., Wu, T., Xiang, G., Wang, H., Wang, B., Zheng, F., & Li, K. (2022). Enhancing animal disease resistance, production efficiency, and welfare through precise genome editing. International Journal of Molecular Sciences, 23(13), 7331. https://doi.org/10.3390/ijms23137331
Livingston, M., Landon, C., Barnes, H., & Brake, J. (2019). White striping and wooden breast myopathies of broiler breast muscle is affected by time-limited feeding, genetic background, and egg storage. Poultry Science, 98(1), 217-226. https://doi.org/10.3382/ps/pey333
Lopez-Moreno, G., Schmitt, C., Spronk, T., Culhane, M., & Torremorell, M. (2022). Evaluation of internal farm biosecurity measures combined with sow vaccination to prevent influenza a virus infection in groups of due-to-wean pigs. BMC Veterinary Research, 18(1). https://doi.org/10.1186/s12917-022-03494-z
Luo, R., Zheng, Z., Yang, C., Zhang, X., Liu, C., Su, G., … & Li, G. (2020). Comparative transcriptome analysis provides insights into the polyunsaturated fatty acid synthesis regulation of fat-1 transgenic sheep. International Journal of Molecular Sciences, 21(3), 1121. https://doi.org/10.3390/ijms21031121
Meek, S., Watson, T., Eory, L., McFarlane, G., Wynne, F., McCleary, S., … & Burdon, T. (2022). Stem cell-derived porcine macrophages as a new platform for studying host-pathogen interactions. BMC Biology, 20(1). https://doi.org/10.1186/s12915-021-01217-8
Meek, S., Watson, T., Eory, L., McFarlane, G., Wynne, F., McCleary, S., … & Burdon, T. (2022). Stem cell-derived porcine macrophages as a new platform for studying host-pathogen interactions. BMC Biology, 20(1). https://doi.org/10.1186/s12915-021-01217-8
Mehra, V. and Kumar, S. (2021). The application of crispr/cas9 technology for farm animals: a review. Agricultural Reviews, (Of). https://doi.org/10.18805/ag.r-2163
Mehrban, H., Naserkheil, M., Lee, D., & Ibáñez-Escriche, N. (2021). Genetic parameters and correlations of related feed efficiency, growth, and carcass traits in hanwoo beef cattle. Animal Bioscience, 34(5), 824-832. https://doi.org/10.5713/ajas.20.0135
Menchaca, A., Santos-Neto, P., Mulet, A., & Crispo, M. (2020). Crispr in livestock: from editing to printing. Theriogenology, 150, 247-254. https://doi.org/10.1016/j.theriogenology.2020.01.063
Menchaca, A., Santos-Neto, P., Mulet, A., & Crispo, M. (2020). Crispr in livestock: from editing to printing. Theriogenology, 150, 247-254. https://doi.org/10.1016/j.theriogenology.2020.01.063
Merrill, S., Koliba, C., Moegenburg, S., Zia, A., Parker, J., Sellnow, T., … & Smith, J. (2019). Decision-making in livestock biosecurity practices amidst environmental and social uncertainty: evidence from an experimental game. Plos One, 14(4), e0214500. https://doi.org/10.1371/journal.pone.0214500
Miao, D., Giassetti, M., Ciccarelli, M., Lopez-Biladeau, B., & Oatley, J. (2019). Simplified pipelines for genetic engineering of mammalian embryos by crispr-cas9 electroporation†. Biology of Reproduction, 101(1), 177-187. https://doi.org/10.1093/biolre/ioz075
Moorby, J. and Fraser, M. (2021). Review: new feeds and new feeding systems in intensive and semi-intensive forage-fed ruminant livestock systems. Animal, 15, 100297. https://doi.org/10.1016/ j.animal.2021.100297
Motsnyi, I., Molodchenkova, O., Nargan, T., Nakonechnyy, M., Mishchenko, I., Lyfenko, S., … & Mishchenko, L. (2022). Impact of alien genes on disease resistance, drought tolerance, and agronomic traits in winter wheat commercial varieties. The Open Agriculture Journal, 16(1). https://doi.org/10.2174/ 18743315-v16-e2111260
Msimang, V., Rostal, M., Cordel, C., Machalaba, C., Tempia, S., Bagge, W., … & Thompson, P. (2022). Factors affecting the use of biosecurity measures for the protection of ruminant livestock and farm workers against infectious diseases in central south africa. Transboundary and Emerging Diseases, 69(5). https://doi.org/10.1111/tbed.14525
Muazzam, A. (2022). Disease stress in poultry; letter to editor. International Journal of Multidisciplinary Sciences and Arts, 1(1), 007-008. https://doi.org/10.47709/ijmdsa.v1i1.1612
Murthy, A. and Muninarayanappa, M. (2023). Sustainable agriculture and livestock integrated farming systems for small and marginal farmers: a case study of kurnool district, andhra pradesh, india. Journal of Experimental Agriculture International, 45(5), 57-62. https://doi.org/10.9734/jeai/2023/v45i52119
Mutua, E., Haan, N., Tumusiime, D., Jost, C., & Bett, B. (2019). A qualitative study on gendered barriers to livestock vaccine uptake in kenya and uganda and their implications on rift valley fever control. Vaccines, 7(3), 86. https://doi.org/10.3390/vaccines7030086
Métras, R., Edmunds, W., Youssouffi, C., Dommergues, L., Fournié, G., Camacho, A., … & Subiros, M. (2020). Estimation of rift valley fever virus spillover to humans during the mayotte 2018–2019 epidemic. Proceedings of the National Academy of Sciences, 117(39), 24567-24574. https://doi.org/10.1073/ pnas.2004468117
Ngeno, K. (2023). Utilization of genome editing for livestock resilience in changing environment. Black Sea Journal of Agriculture, 6(3), 314-320. https://doi.org/10.47115/bsagriculture.1263027
Ngeno, K. (2023). Utilization of genome editing for livestock resilience in changing environment. Black Sea Journal of Agriculture, 6(3), 314-320. https://doi.org/10.47115/bsagriculture.1263027
Nkembi, L., Nkengafac, N., & Mubeteneh, T. (2021). Production diversity and constraints in smallholder farms in the bamboutos mountain. International Journal of Research and Review, 8(4), 269-277. https://doi.org/10.52403/ijrr.20210434
Nobles, Y., Rocha, A., Farreras, J., Manchego, K., Padilla, S., & Lorduy, J. (2022). Analysis of sustainability in livestock production systems in cordoba, colombia... https://doi.org/10.21203/rs.3.rs-1171148/v1
Novais, F., Pires, P., Alexandre, P., Dromms, R., Iglesias, A., Ferraz, J., … & Fukumasu, H. (2019). Identification of a metabolomic signature associated with feed efficiency in beef cattle. BMC Genomics, 20(1). https://doi.org/10.1186/s12864-018-5406-2
Oguejiofor, C. (2020). Prospects in the utilization of assisted reproductive technologies (art) towards improved cattle production in nigeria. Nigerian Journal of Animal Production, 46(5). https://doi.org/ 10.51791/njap.v46i5.278
Okpeku, M., Ogah, D., & Adeleke, M. (2019). A review of challenges to genetic improvement of indigenous livestock for improved food production in nigeria. African Journal of Food Agriculture Nutrition and Development, 19(01), 13959-13978. https://doi.org/10.18697/ajfand.84.blfb1021
Onyango, D., Guitian, J., & Musallam, I. (2021). Brucellosis risk factors and milk hygiene handling practices in pastoral communities in isiolo county, kenya. Veterinary Medicine and Science, 7(4), 1254-1262. https://doi.org/10.1002/vms3.453
Oyewole, S. and Sennuga, S. (2020). Factors influencing sustainable agricultural practices among smallholder farmers in ogun state of nigeria. Asian Journal of Advances in Agricultural Research, 17-24. https://doi.org/10.9734/ajaar/2020/v14i130120
Palangi, V. and Lackner, M. (2022). Management of enteric methane emissions in ruminants using feed additives: a review. Animals, 12(24), 3452. https://doi.org/10.3390/ani12243452
Park, T. (2023). — invited review — gene-editing techniques and their applications in livestock and beyond. Animal Bioscience, 36(2), 333-338. https://doi.org/10.5713/ab.22.0383
Perisse, I., Fan, Z., Singina, G., White, K., & Polejaeva, I. (2021). Improvements in gene editing technology boost its applications in livestock. Frontiers in Genetics, 11. https://doi.org/ 10.3389/ fgene.2020.614688
Perisse, I., Fan, Z., Singina, G., White, K., & Polejaeva, I. (2021). Improvements in gene editing technology boost its applications in livestock. Frontiers in Genetics, 11. https://doi.org/ 10.3389/ fgene.2020.614688
Perisse, I., Fan, Z., Singina, G., White, K., & Polejaeva, I. (2021). Improvements in gene editing technology boost its applications in livestock. Frontiers in Genetics, 11. https://doi.org/ 10.3389/ fgene.2020.614688
Perisse, I., Fan, Z., Singina, G., White, K., & Polejaeva, I. (2021). Improvements in gene editing technology boost its applications in livestock. Frontiers in Genetics, 11. https://doi.org/10.3389/ fgene.2020.614688
Perisse, I., Fan, Z., Singina, G., White, K., & Polejaeva, I. (2021). Improvements in gene editing technology boost its applications in livestock. Frontiers in Genetics, 11. https://doi.org/10.3389/ fgene.2020.614688
Perisse, I., Fan, Z., Singina, G., White, K., & Polejaeva, I. (2021). Improvements in gene editing technology boost its applications in livestock. Frontiers in Genetics, 11. https://doi.org/10.3389/ fgene.2020.614688
Petersen, G., Buntjer, J., Fs, H., Byrne, T., & Doeschl-Wilson, A. (2022). Modeling suggests gene editing combined with vaccination could eliminate a persistent disease in livestock. Proceedings of the National Academy of Sciences, 119(9). https://doi.org/10.1073/pnas.2107224119
Petersen, G., Buntjer, J., Fs, H., Byrne, T., Whitelaw, B., & Doeschl‐Wilson, A. (2021). Gene editing in farm animals: a step change for eliminating epidemics on our doorstep?.. https://doi.org/10.1101/ 2021.04.19.440533
Pixley, K., Falck-Zepeda, J., Giller, K., Glenna, L., Gould, F., Mallory‐Smith, C., … & Stewart, C. (2019). Genome editing, gene drives, and synthetic biology: will they contribute to disease-resistant crops, and who will benefit?. Annual Review of Phytopathology, 57(1), 165-188. https://doi.org/10.1146/annurev-phyto-080417-045954
R.Bhise, M., B.Kulkarni, D., & Borole, V. (2019). Preprocessing and statistical analysis of soil parameters using conventional laboratory techniques and non-imaging spectral techniques for vaijapur taluka.. International Journal of Recent Technology and Engineering, 8(2), 3092-3096. https://doi.org/ 10.35940/ijrte.b2639.078219
Riera, A., Duluins, O., Schuster, M., & Baret, P. (2023). Accounting for diversity while assessing sustainability: insights from the walloon bovine sectors. Agronomy for Sustainable Development, 43(2). https://doi.org/10.1007/s13593-023-00882-z
S, P., Chen, Y., Zhao, N., Feng, X., Yang, D., Yong-shen, W., … & Jin, Z. (2019). A new subset of small stem cells in bovine bone marrow stromal cell populations. Journal of Cellular Biochemistry, 120(8), 13881-13892. https://doi.org/10.1002/jcb.28661
Sabertanha, E., Rouzbehan, Y., Fazaeli, H., & Rezaei, J. (2021). Nutritive value of sorghum silage for sheep. Journal of Animal Physiology and Animal Nutrition, 105(6), 1034-1045. https://doi.org/10. 1111/jpn.13548
Segal, D. (2022). The promise of gene editing: so close and yet so perilously far. Frontiers in Genome Editing, 4. https://doi.org/10.3389/fgeed.2022.974798
Shakweer, W., Krivoruchko, A., Dessouki, S., & Khattab, A. (2023). A review of transgenic animal techniques and their applications. Journal of Genetic Engineering and Biotechnology, 21(1). https://doi.org/ 10.1186/s43141-023-00502-z
Shinoda, C., Yasuda, J., Yamagata, K., Suzuki, K., Satoh, M., Roh, S., … & Uemoto, Y. (2022). Genetic relationships of feed efficiency and growth traits with carcass traits in japanese shorthorn cattle. Animal Science Journal, 93(1). https://doi.org/10.1111/asj.13691
Singh, P. and Ali, S. (2021). Impact of crispr-cas9-based genome engineering in farm animals. Veterinary Sciences, 8(7), 122. https://doi.org/10.3390/vetsci8070122
Singh, P. and Ali, S. (2021). Impact of crispr-cas9-based genome engineering in farm animals. Veterinary Sciences, 8(7), 122. https://doi.org/10.3390/vetsci8070122
Singh, P. and Ali, S. (2021). Impact of crispr-cas9-based genome engineering in farm animals. Veterinary Sciences, 8(7), 122. https://doi.org/10.3390/vetsci8070122
Singh, P. and Ali, S. (2021). Impact of crispr-cas9-based genome engineering in farm animals. Veterinary Sciences, 8(7), 122. https://doi.org/10.3390/vetsci8070122
Singh, P. and Ali, S. (2021). Impact of crispr-cas9-based genome engineering in farm animals. Veterinary Sciences, 8(7), 122. https://doi.org/10.3390/vetsci8070122
Singh, P. and Ali, S. (2021). Impact of crispr-cas9-based genome engineering in farm animals. Veterinary Sciences, 8(7), 122. https://doi.org/10.3390/vetsci8070122
Singh, P. and Ali, S. (2021). Impact of crispr-cas9-based genome engineering in farm animals. Veterinary Sciences, 8(7), 122. https://doi.org/10.3390/vetsci8070122
Skrzyszowska, M. and Samiec, M. (2021). Generating cloned goats by somatic cell nuclear transfer—molecular determinants and application to transgenics and biomedicine. International Journal of Molecular Sciences, 22(14), 7490. https://doi.org/10.3390/ijms22147490
Skrzyszowska, M. and Samiec, M. (2021). Generating cloned goats by somatic cell nuclear transfer—molecular determinants and application to transgenics and biomedicine. International Journal of Molecular Sciences, 22(14), 7490. https://doi.org/10.3390/ijms22147490
Skrzyszowska, M. and Samiec, M. (2021). Generating cloned goats by somatic cell nuclear transfer—molecular determinants and application to transgenics and biomedicine. International Journal of Molecular Sciences, 22(14), 7490. https://doi.org/10.3390/ijms22147490
Skrzyszowska, M. and Samiec, M. (2021). Generating cloned goats by somatic cell nuclear transfer—molecular determinants and application to transgenics and biomedicine. International Journal of Molecular Sciences, 22(14), 7490. https://doi.org/10.3390/ijms22147490
Soares, J., Tanwir, S., & Grosser, J. (2020). Development of genetically modified citrus plants for the control of citrus canker and huanglongbing. Tropical Plant Pathology, 45(3), 237-250. https://doi.org/10.1007/s40858-020-00362-9
Song, G., Prieto, H., & Orbović, V. (2019). Agrobacterium-mediated transformation of tree fruit crops: methods, progress, and challenges. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00226
Stedman, A., Wright, D., Schreur, P., Clark, M., Avs., H., Gilbert, S., … & Warimwe, G. (2019). Safety and efficacy of chadox1 rvf vaccine against rift valley fever in pregnant sheep and goats. NPJ Vaccines, 4(1). https://doi.org/10.1038/s41541-019-0138-0
Stocks, J., Metheringham, C., Plumb, W., Lee, S., Kelly, L., Nichols, R., … & Buggs, R. (2019). Genomic basis of european ash tree resistance to ash dieback fungus. Nature Ecology & Evolution, 3(12), 1686-1696. https://doi.org/10.1038/s41559-019-1036-6
Sun, L., Nasrullah, .., Ke, F., Nie, Z., Wang, P., & Xu, J. (2019). Citrus genetic engineering for disease resistance: past, present and future. International Journal of Molecular Sciences, 20(21), 5256. https://doi.org/10.3390/ijms20215256
Sun, X., Liang, Y., Gao, Q., Guo, J., Tang, C., Shi, K., … & Mao, Y. (2021). Agpat3 gene polymorphisms are associated with milk production traits in chinese holstein cows. Journal of Dairy Research, 88(3), 247-252. https://doi.org/10.1017/s0022029921000546
Sánchez-Molano, E., Kapsona, V., Ilska, J., Desire, S., Conington, J., Mucha, S., … & Banos, G. (2019). Genetic analysis of novel phenotypes for farm animal resilience to weather variability. BMC Genetics, 20(1). https://doi.org/10.1186/s12863-019-0787-z
Söllner, J., Mettenleiter, T., & Petersen, B. (2021). Genome editing strategies to protect livestock from viral infections. Viruses, 13(10), 1996. https://doi.org/10.3390/v13101996
Söllner, J., Mettenleiter, T., & Petersen, B. (2021). Genome editing strategies to protect livestock from viral infections. Viruses, 13(10), 1996. https://doi.org/10.3390/v13101996
Söllner, J., Mettenleiter, T., & Petersen, B. (2021). Genome editing strategies to protect livestock from viral infections. Viruses, 13(10), 1996. https://doi.org/10.3390/v13101996
Taifouris, M. and Martín, M. (2021). Toward a circular economy approach for integrated intensive livestock and cropping systems. Acs Sustainable Chemistry & Engineering, 9(40), 13471-13479. https://doi.org/10.1021/acssuschemeng.1c04014
Thulasinathan, T., Ayyenar, B., Kambale, R., Manickam, S., Gopalakrishnan, C., Priyanka, S., … & Raveendran, M. (2023). Marker assisted introgression of resistance genes and phenotypic evaluation enabled identification of durable and broad-spectrum blast resistance in elite rice cultivar, co 51. Genes, 14(3), 719. https://doi.org/10.3390/genes14030719
Tian, M., He, X., Feng, Y., Wang, W., Chen, H., Gong, M., … & Eerde, A. (2021). Pollution by antibiotics and antimicrobial resistance in livestock and poultry manure in china, and countermeasures. Antibiotics, 10(5), 539. https://doi.org/10.3390/antibiotics10050539
Tsartsianidou, V., Sánchez-Molano, E., Kapsona, V., Basdagianni, Z., Chatziplis, D., Arsenos, G., … & Banos, G. (2021). A comprehensive genome-wide scan detects genomic regions related to local adaptation and climate resilience in mediterranean domestic sheep. Genetics Selection Evolution, 53(1). https://doi.org/10.1186/s12711-021-00682-7
Ugbogu, E., Elghandour, M., Ikpeazu, V., Buendía, G., Molina, O., Arunsi, U., … & Salem, A. (2019). The potential impacts of dietary plant natural products on the sustainable mitigation of methane emission from livestock farming. Journal of Cleaner Production, 213, 915-925. https://doi.org/ 10.1016/ j.jclepro.2018.12.233
Valdez-Arjona, L. and Ramírez-Mella, M. (2019). Pumpkin waste as livestock feed: impact on nutrition and animal health and on quality of meat, milk, and egg. Animals, 9(10), 769. https://doi.org/ 10.3390/ani9100769
Valdez-Arjona, L. and Ramírez-Mella, M. (2019). Pumpkin waste as livestock feed: impact on nutrition and animal health and on quality of meat, milk, and egg. Animals, 9(10), 769. https://doi.org/ 10.3390/ani9100769
Valencia-Salazar, S., Jiménez-Ferrer, G., Molina-Botero, I., Ku-Vera, J., Chirinda, N., & Arango, J. (2021). Methane mitigation potential of foliage of fodder trees mixed at two levels with a tropical grass. Agronomy, 12(1), 100. https://doi.org/10.3390/agronomy12010100
Viana, J., Vendruscolo, R., Silveira, V., Quadros, F., Mezzomo, M., & Tourrand, J. (2021). Sustainability of livestock systems in the pampa biome of brazil: an analysis highlighting the rangeland dilemma. Sustainability, 13(24), 13781. https://doi.org/10.3390/su132413781
Villalba, J., Beauchemin, K., Gregorini, P., & MacAdam, J. (2019). Pasture chemoscapes and their ecological services. Translational Animal Science, 3(2), 829-841. https://doi.org/10.1093/tas/txz003
Wahyono, T., Widodo, S., Kurniawati, A., Anggraeny, Y., Widiawati, Y., Rofiq, M., … & Sasongko, W. (2023). Green medicated supplement (green ms) can reduce enteric methane emission from forage-based ruminant rations: in vitro study. Iop Conference Series Earth and Environmental Science, 1133(1), 012058. https://doi.org/10.1088/1755-1315/1133/1/012058
Wang, H., Gao, F., & Ren, W. (2022). Application of crispr/cas technology in spermatogenesis research and male infertility treatment. Genes, 13(6), 1000. https://doi.org/10.3390/genes13061000
Wang, S., Qu, Z., Huang, Q., Zhang, J., Lin, S., Yang, Y., … & Zhang, K. (2022). Application of gene editing technology in resistance breeding of livestock. Life, 12(7), 1070. https://doi.org/ 10.3390/life12071070
Wang, S., Qu, Z., Huang, Q., Zhang, J., Lin, S., Yang, Y., … & Zhang, K. (2022). Application of gene editing technology in resistance breeding of livestock. Life, 12(7), 1070. https://doi.org/ 10.3390/life12071070
Wu, H., Cui, X., Guan, S., Yao, Y., Wu, H., Zhang, J., … & Liu, G. (2022). The improved milk quality and enhanced anti-inflammatory effect in acetylserotonin-o-methyltransferase (asmt) overexpressed goats: an association with the elevated endogenous melatonin production. Molecules, 27(2), 572. https://doi.org/10.3390/molecules27020572
Wu, K., Pan, C., Zhou, S., Zhu, F., Long, G., & Wu, B. (2021). Farming ducks in a maize field: a new and potential crop-livestock system from china. Agronomy for Sustainable Development, 41(6). https://doi.org/10.1007/s13593-021-00732-w
Xu, L., Liu, Y., Dai, Y., & Fang, H. (2023). A novel teaching case design for complex engineering problems in embedded training courses. Advances in Education Humanities and Social Science Research, 1(3), 332. https://doi.org/10.56028/aehssr.3.1.332
Xu, R., Wu, Y., & Chen, C. (2022). Agricultural green efficiency and productivity incorporating waste recycling. Australian Economic Papers, 61(3), 635-660. https://doi.org/10.1111/1467-8454.12264
Yuan, M., Gao, Y., Han, J., Wu, T., Zhang, J., & Wei, Y. (2020). The development and application of genome editing technology in ruminants: a review. Frontiers of Agricultural Science and Engineering, 7(2), 171. https://doi.org/10.15302/j-fase-2019302
Zafar, I., Singh, S., & Kumar, J. (2019). Genome editing by programmable nucleases and their applications in livestock species. Journal of Livestock Science, 10(-). https://doi.org/10.33259/ jlivestsci.2019.32-47
Zafar, I., Singh, S., & Kumar, J. (2019). Genome editing by programmable nucleases and their applications in livestock species. Journal of Livestock Science, 10(-). https://doi.org/10. 33259/jlivestsci.2019.32-47
Zapałowska, A. and Bashutska, U. (2019). The use of agricultural waste for the renewable energy production. Наукові Праці Лісівничої Академії Наук України, (18), 138-144. https://doi.org/ 10.15421/411914
Zeng, X., Li, S., Liu, L., Cai, S., Ye, Q., Xue, B., … & Zeng, X. (2023). Role of functional fatty acids in modulation of reproductive potential in livestock. Journal of Animal Science and Biotechnology, 14(1). https://doi.org/10.1186/s40104-022-00818-9
Zhang, B., Zhang, X., Schilling, M., Tabler, G., Peebles, E., & Zhai, W. (2020). Effects of broiler genetic strain and dietary amino acid reduction on (part i) growth performance and internal organ development. Poultry Science, 99(6), 3266-3279. https://doi.org/10.1016/j.psj.2020.03.024
Zhang, X., Zhao, C., Shao, M., Liu, P., & Chen, G. (2022). The roadmap of bioeconomy in china. Engineering Biology, 6(4), 71-81. https://doi.org/10.1049/enb2.12026
Zhang, Y., Yang, Z., Ma, H., Huang, L., Ding, F., Du, Y., … & Ma, Z. (2021). Pyramiding of fusarium head blight resistance quantitative trait loci, fhb1, fhb4, and fhb5, in modern chinese wheat cultivars. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.694023
Zhao, J., Lai, L., Ji, W., & Zhou, Q. (2019). Genome editing in large animals: current status and future prospects. National Science Review, 6(3), 402-420. https://doi.org/10.1093/nsr/nwz013
Zhao, J., Lai, L., Ji, W., & Zhou, Q. (2019). Genome editing in large animals: current status and future prospects. National Science Review, 6(3), 402-420. https://doi.org/10.1093/nsr/nwz013
Zhuang, S., Brusselman, E., Sonck, B., & Demeyer, P. (2020). Validation of five gas analysers for application in ammonia emission measurements at livestock houses according to the vera test protocol. Applied Sciences, 10(15), 5034. https://doi.org/10.3390/app10155034
Zhuang, Z., Wu, J., Qiu, Y., Ruan, D., Ding, R., Xu, C., … & Wu, Z. (2023). Improving the accuracy of genomic prediction for meat quality traits using whole genome sequence data in pigs. Journal of Animal Science and Biotechnology, 14(1). https://doi.org/10.1186/s40104-023-00863-y
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Umair Ahmad Khan, Laraib Riaz, Sehrish Javaid, Iram Shehzadi, Ishraq Sufi, Asif Naseem, Muhammad Kashif Hanif, Muhammad Sufhan Tahir
This work is licensed under a Creative Commons Attribution 4.0 International License.