Predator- Prey Interaction In Plant –Associated Ecosystems. Effect On Plant Fitness And Trophic Cascade
DOI:
https://doi.org/10.53555/jaz.v44iS7.2854Keywords:
Predator-prey interactions, Ecosystem stability, Trophic cascades, Conservation efforts Plant fitnessAbstract
Predator-prey interactions in plant-associated ecosystems play a crucial role in shaping ecosystem dynamics and stability. This study provides a comprehensive overview of the implications of these interactions, highlighting the intricate web of relationships among predators, herbivores, and plants. The findings underscore the importance of maintaining predator-prey interactions for ecosystem stability and functioning. Trophic cascades initiated by predator-prey interactions have been shown to regulate herbivore populations, indirectly benefiting plant communities. However, human activities can significantly impact predator populations and trophic cascades, emphasizing the need for conservation efforts to preserve these important ecological dynamics. The integration of molecular techniques and modeling approaches can enhance our understanding of trophic cascades in plant-associated ecosystems. Conservation strategies aimed at promoting predator diversity and enhancing plant fitness are essential for maintaining ecosystem stability and promoting sustainable management of plant-associated ecosystems. Further research is needed to investigate the complex dynamics of predator-prey interactions and trophic cascades, as well as to develop effective conservation strategies to preserve these important ecological dynamics.
Downloads
References
Akter, M., Siddique, S., Momotaz, R., Arifunnahar, M., Alam, K., & Mohiuddin, S. (2019). Biological control of insect pests of agricultural crops through habitat management was discussed. Journal of Agricultural Chemistry and Environment, 08(01), 1-13. https://doi.org/10.4236/jacen.2019.81001
Anderson, S., Ladley, J., Robertson, A., & Kelly, D. (2021). Effects of changes in bird community composition and species abundance on plant reproduction, through pollination and seed dispersal. Ibis, 163(3), 875-889. https://doi.org/10.1111/ibi.12938
Ballal, C., Pratheepa, M., Verghese, A., & Sreedevi, K. (2021). Interspecific association of solanum whitefly, aleurothrixus trachoides (back), coccinellid predator, axinoscymnus puttarudriahi kapur and munshi and ant, tapinoma melanocephalum (fabricius) in capsicum. International Journal of Tropical Insect Science, 42(2), 1749-1756. https://doi.org/10.1007/s42690-021-00701-6
Barnes, A., Scherber, C., Brose, U., Borer, E., Ebeling, A., Gauzens, B., … & Eisenhauer, N. (2020). Biodiversity enhances the multitrophic control of arthropod herbivory. Science Advances, 6(45). https://doi.org/10.1126/sciadv.abb6603
Briseño-Sánchez, M., Martorell, C., Valverde, P., & Mandujano, M. (2022). Biotic interactions prior to seed dispersal determine recruitment probability of peyote (lophophora diffusa, cactaceae), a threatened species pollinator-dependent. Plant Ecology, 223(10-12), 1193-1206. https://doi.org/10.1007/s11258-022-01267-0
Cairns, J., Moerman, F., Fronhofer, E., Altermatt, F., & Hiltunen, T. (2020). Evolution in interacting species alters predator life-history traits, behaviour and morphology in experimental microbial communities. Proceedings of the Royal Society B Biological Sciences, 287(1928), 20200652. https://doi.org/10.1098/rspb.2020.0652
Cairns, J., Moerman, F., Fronhofer, E., Altermatt, F., & Hiltunen, T. (2020). Evolution in interacting species alters predator life-history traits, behaviour and morphology in experimental microbial communities. Proceedings of the Royal Society B Biological Sciences, 287(1928), 20200652. https://doi.org/10.1098/rspb.2020.0652
Carpenter, J., Wilmshurst, J., McConkey, K., Hume, J., Wotton, D., Shiels, A., … & Drake, D. (2020). The forgotten fauna: native vertebrate seed predators on islands. Functional Ecology, 34(9), 1802-1813. https://doi.org/10.1111/1365-2435.13629
Case, S. and Tarwater, C. (2023). Exploitation competition between seed predators and dispersers introduced to hawaiian forests. Ecology, 104(6). https://doi.org/10.1002/ecy.4038
Diller, J., Hüftlein, F., Lücker, D., Feldhaar, H., & Laforsch, C. (2023). Allelochemical run-off from the invasive terrestrial plant impatiens glandulifera decreases defensibility in daphnia. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-27667-4
Divekar, P., Narayana, S., Divekar, B., Kumar, R., Gowda, G., Ray, A., … & Behera, T. (2022). Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. International Journal of Molecular Sciences, 23(5), 2690. https://doi.org/10.3390/ijms23052690
Downey, H., Lewis, O., Bonsall, M., Ward, A., & Gripenberg, S. (2020). Assessing the potential for indirect interactions between tropical tree species via shared insect seed predators. Biotropica, 52(3), 509-520. https://doi.org/10.1111/btp.12759
Fornoff, F. (2023). Dna barcoding resolves quantitative multi‐trophic interaction networks and reveals pest species in trap nests. Insect Conservation and Diversity, 16(5), 725-731. https://doi.org/10.1111/icad.12664
Hirt, M., Tucker, M., Müller, T., Rosenbaum, B., & Brose, U. (2020). Rethinking trophic niches: speed and body mass colimit prey space of mammalian predators. Ecology and Evolution, 10(14), 7094-7105. https://doi.org/10.1002/ece3.6411
Jactel, H., Moreira, X., & Castagneyrol, B. (2021). Tree diversity and forest resistance to insect pests: patterns, mechanisms, and prospects. Annual Review of Entomology, 66(1), 277-296. https://doi.org/10.1146/annurev-ento-041720-075234
Kempel, A., Auge, H., & Allan, E. (2020). Context-dependency of enemy impact on plant communities in a changing world.. https://doi.org/10.20944/preprints202002.0005.v1
Kuile, A., Apigo, A., Bui, A., Butner, K., Childress, J., Copeland, S., … & Young, H. (2022). Changes in invertebrate food web structure between high- and low-productivity environments are driven by intermediate but not top-predator diet shifts. Biology Letters, 18(10). https://doi.org/10.1098/rsbl.2022.0364
LeCraw, R. and Srivastava, D. (2019). Biogeographic context dependence of trophic cascade strength in bromeliad food webs. Ecology, 100(7). https://doi.org/10.1002/ecy.2692
Lee, B., Clark, R., Basu, S., & Crowder, D. (2021). Predators affect a plant virus through direct and trait-mediated indirect effects on vectors.. https://doi.org/10.1101/2021.02.17.431666
Lee, Z., Cohen, C., Baranowski, A., Berry, K., McGuire, M., Pelletier, T., … & Preisser, E. (2023). Auditory predator cues decrease herbivore survival and plant damage. Ecology, 104(4). https://doi.org/10.1002/ecy.4007
Manaqib, M., Suma'inna, S., & Zahra, A. (2022). Mathematical model of three species food chain with intraspecific competition and harvesting on predator. Barekeng Jurnal Ilmu Matematika Dan Terapan, 16(2), 551-562. https://doi.org/10.30598/barekengvol16iss2pp551-562
Meng, Y., Chen, H., Behm, J., Xia, S., Wang, B., Liu, S., … & Yang, X. (2021). Effects of different tea plantation management systems on arthropod assemblages and network structure. Ecosphere, 12(7). https://doi.org/10.1002/ecs2.3677
Mezquida, E., Caputo, P., & Acebes, P. (2021). Acorn crop, seed size and chemical defenses determine the performance of specialized insect predators and reproductive output in a mediterranean oak. Insects, 12(8), 721. https://doi.org/10.3390/insects12080721
Moncalvillo, B., Matesanz, S., Escudero, A., & Sánchez, A. (2020). Habitat fragmentation and population features differently affect fruit predation, fecundity and offspring performance in a non‐specialist gypsum plant. Plant Biology, 23(1), 184-192. https://doi.org/10.1111/plb.13183
Mondal, B., Roy, S., Ghosh, U., & Tiwari, P. (2022). A systematic study of autonomous and nonautonomous predator–prey models for the combined effects of fear, refuge, cooperation and harvesting. The European Physical Journal Plus, 137(6). https://doi.org/10.1140/epjp/s13360-022-02915-0
Monk, J., Smith, J., Donadío, E., Perrig, P., Crego, R., Martin, N., … & Middleton, A. (2022). Cascading effects of a disease outbreak in a remote protected area. Ecology Letters, 25(5), 1152-1163. https://doi.org/10.1111/ele.13983
Monk, J., Smith, J., Donadío, E., Perrig, P., Crego, R., Martin, N., … & Middleton, A. (2022). Cascading effects of a disease outbreak in a remote protected area. Ecology Letters, 25(5), 1152-1163. https://doi.org/10.1111/ele.13983
Monk, J., Smith, J., Donadío, E., Perrig, P., Crego, R., Martin, N., … & Middleton, A. (2022). Cascading effects of a disease outbreak in a remote protected area. Ecology Letters, 25(5), 1152-1163. https://doi.org/10.1111/ele.13983
Natsukawa, H., Yuasa, H., & Komuro, S. (2021). Raptor breeding sites indicate high plant biodiversity in urban ecosystems. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-00556-4
Neto, E., Mendes, J., Filgueiras, R., Lima, D., Guedes, R., & Melo, J. (2023). Acaricide exposure impairs predatory behavior of the phytoseiid mite neoseiulus idaeus (acari: phytoseiidae). Journal of Economic Entomology, 116(4), 1225-1232. https://doi.org/10.1093/jee/toad127
Niiranen, S., Orio, A., Bartolino, V., Bergström, U., Kallasvuo, M., Neuenfeldt, S., … & Casini, M. (2019). Predator-prey body size relationships of cod in a low-diversity marine system. Marine Ecology Progress Series, 627, 201-206. https://doi.org/10.3354/meps13098
Ogita, S., Tanaka, Y., & Kuriwada, T. (2021). Effect of diet on body size and survival of omnivorous crickets. Entomological Science, 24(4), 347-353. https://doi.org/10.1111/ens.12487
Phenix, L., Tricarico, D., Quintero, E., Bond, M., Brandl, S., & Gallagher, A. (2019). Evaluating the effects of large marine predators on mobile prey behavior across subtropical reef ecosystems. Ecology and Evolution, 9(24), 13740-13751. https://doi.org/10.1002/ece3.5784
Potapov, A., Klarner, B., Sandmann, D., Widyastuti, R., & Scheu, S. (2019). Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land‐use systems. Journal of Animal Ecology, 88(12), 1845-1859. https://doi.org/10.1111/1365-2656.13027
Raymond, W., Hughes, B., Stephens, T., Mattson, C., Bolwerk, A., & Eckert, G. (2021). Testing the generality of sea otter‐mediated trophic cascades in seagrass meadows. Oikos, 130(5), 725-738. https://doi.org/10.1111/oik.07681
Raymond, W., Hughes, B., Stephens, T., Mattson, C., Bolwerk, A., & Eckert, G. (2021). Testing the generality of sea otter‐mediated trophic cascades in seagrass meadows. Oikos, 130(5), 725-738. https://doi.org/10.1111/oik.07681
Ristok, C., Weinhold, A., Ciobanu, M., Poeschl, Y., Roscher, C., Vergara, F., … & Dam, N. (2022). Plant diversity effects on herbivory are related to soil biodiversity and plant chemistry. Journal of Ecology, 111(2), 412-427. https://doi.org/10.1111/1365-2745.14032
Rodriguez-Saona, C., Urbaneja-Bernat, P., Salamanca, J., & Garzón-Tovar, V. (2020). Interactive effects of an herbivore-induced plant volatile and color on an insect community in cranberry. Insects, 11(8), 524. https://doi.org/10.3390/insects11080524
Rowen, E., Pearsons, K., Smith, R., Wickings, K., & Tooker, J. (2022). Early‐season plant cover supports more effective pest control than insecticide applications. Ecological Applications, 32(5). https://doi.org/10.1002/eap.2598
Schuldt, A., Ebeling, A., Kunz, M., Staab, M., Guimarães‐Steinicke, C., Bachmann, D., … & Eisenhauer, N. (2019). Multiple plant diversity components drive consumer communities across ecosystems. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09448-8
Schuldt, A., Ebeling, A., Kunz, M., Staab, M., Guimarães‐Steinicke, C., Bachmann, D., … & Eisenhauer, N. (2019). Multiple plant diversity components drive consumer communities across ecosystems. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09448-8
Schuldt, A., Ebeling, A., Kunz, M., Staab, M., Guimarães‐Steinicke, C., Bachmann, D., … & Eisenhauer, N. (2019). Multiple plant diversity components drive consumer communities across ecosystems. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09448-8
Schweiss, V. and Rakocinski, C. (2020). Destabilizing effects on a classic tri-trophic oyster-reef cascade. Plos One, 15(12), e0242965. https://doi.org/10.1371/journal.pone.0242965
Sercu, B., Moeneclaey, I., Bonte, D., & Baeten, L. (2019). Induced phenological avoidance: a neglected defense mechanism against seed predation in plants. Journal of Ecology, 108(3), 1115-1124. https://doi.org/10.1111/1365-2745.13325
Shang, R., Li, S., Huang, X., Liu, W., Lang, X., & Su, J. (2021). Effects of soil properties and plant diversity on soil microbial community composition and diversity during secondary succession. Forests, 12(6), 805. https://doi.org/10.3390/f12060805
Sheriff, M., Peacor, S., Hawlena, D., & Thaker, M. (2020). Non‐consumptive predator effects on prey population size: a dearth of evidence. Journal of Animal Ecology, 89(6), 1302-1316. https://doi.org/10.1111/1365-2656.13213
Su, H., Feng, Y., Chen, J., Chen, J., Ma, S., Fang, J., … & Xie, P. (2021). Determinants of trophic cascade strength in freshwater ecosystems: a global analysis. Ecology, 102(7). https://doi.org/10.1002/ecy.3370
Su, H., Feng, Y., Chen, J., Chen, J., Ma, S., Fang, J., … & Xie, P. (2021). Determinants of trophic cascade strength in freshwater ecosystems: a global analysis. Ecology, 102(7). https://doi.org/10.1002/ecy.3370
Su, H., Feng, Y., Chen, J., Chen, J., Ma, S., Fang, J., … & Xie, P. (2021). Determinants of trophic cascade strength in freshwater ecosystems: a global analysis. Ecology, 102(7). https://doi.org/10.1002/ecy.3370
Su, H., Feng, Y., Chen, J., Chen, J., Ma, S., Fang, J., … & Xie, P. (2021). Determinants of trophic cascade strength in freshwater ecosystems: a global analysis. Ecology, 102(7). https://doi.org/10.1002/ecy.3370
Tahadlová, M., Mottl, O., Jorge, L., Koane, B., Novotny, V., & Sam, K. (2022). Trophic cascades in tropical rainforests: effects of vertebrate predator exclusion on arthropods and plants in papua new guinea. Biotropica, 55(1), 70-80. https://doi.org/10.1111/btp.13160
Tan, J., Wei, N., & Turcotte, M. (2023). Trophic interactions in microbiomes influence plant host population size and ecosystem function.. https://doi.org/10.1101/2023.03.06.531362
Thurman, J., Northfield, T., & Snyder, W. (2019). Weaver ants provide ecosystem services to tropical tree crops. Frontiers in Ecology and Evolution, 7. https://doi.org/10.3389/fevo.2019.00120
Uusi-Heikkilä, S., Perälä, T., & Kuparinen, A. (2022). Fishing triggers trophic cascade in terms of variation, not abundance, in an allometric trophic network model. Canadian Journal of Fisheries and Aquatic Sciences, 79(6), 947-957. https://doi.org/10.1139/cjfas-2021-0146
Wan, N., Cavalieri, A., Siemann, E., Dainese, M., Li, W., & Jiang, J. (2022). Spatial aggregation of herbivores and predators enhances tri‐trophic cascades in paddy fields: rice monoculture versus rice‐fish co‐culture. Journal of Applied Ecology, 59(8), 2036-2045. https://doi.org/10.1111/1365-2664.14204
Wan, N., Cavalieri, A., Siemann, E., Dainese, M., Li, W., & Jiang, J. (2022). Spatial aggregation of herbivores and predators enhances tri‐trophic cascades in paddy fields: rice monoculture versus rice‐fish co‐culture. Journal of Applied Ecology, 59(8), 2036-2045. https://doi.org/10.1111/1365-2664.14204
Wan, N., Zheng, X., Fu, L., Kiær, L., Zhang, Z., Chaplin‐Kramer, R., … & Li, B. (2020). Global synthesis of effects of plant species diversity on trophic groups and interactions. Nature Plants, 6(5), 503-510. https://doi.org/10.1038/s41477-020-0654-y
Wan, N., Zheng, X., Fu, L., Kiær, L., Zhang, Z., Chaplin‐Kramer, R., … & Li, B. (2020). Global synthesis of effects of plant species diversity on trophic groups and interactions. Nature Plants, 6(5), 503-510. https://doi.org/10.1038/s41477-020-0654-y
Xiao, S., Sun, Y., Cao, X., Zhai, N., Callaway, R., Wan, N., … & Ding, J. (2023). Intensity of herbivory correlates with stronger constitutive and weaker induced defenses for non-native plant species -- another mechanism for eica?.. https://doi.org/10.22541/au.167271445.58143877/v1
Zeng, D., Jin, T., Zhao, Y., Yan, C., Zhang, Z., & Ding, P. (2020). Rodent abundance triggered switch between the relative mutualism and predation in a rodent–seed system of the subtropical island forest. Integrative Zoology, 16(1), 109-119. https://doi.org/10.1111/1749-4877.12475
Zhang, R., Shen, H., Dong, S., Li, S., Xiao, J., Zhi, Y., … & Shi, H. (2022). Effects of 5-year nitrogen addition on species composition and diversity of an alpine steppe plant community on qinghai-tibetan plateau. Plants, 11(7), 966. https://doi.org/10.3390/plants11070966
Zhou, L., Luo, M., Hong, P., Leroux, S., Chen, F., & Wang, S. (2023). Energy transfer efficiency rather than productivity determines trophic cascades.. https://doi.org/10.22541/au.168079154.43109618/v1
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Sehrish Khan, Sehrish Javed, Laraib Riaz, Asif Naseem, Muhammad Kashif Hanif, Umair Ahmad Khan Awan, Amadudin

This work is licensed under a Creative Commons Attribution 4.0 International License.