Mitigating Salt-Induced Damages in Wheat with Foliar-Applied Nigella sativa Seed Extract: A Comprehensive Study

Main Article Content

Faiza Mushtaq
Muhammad Kashif Hanif
Atifa Masood
Bushra Parveen
Iqra Saba
Irum Mustafa
Umair A. Khan
Asif Naseem

Abstract

Nigella sativa, a medicinal plant, known for its diverse bioactive compounds, including antioxidants and phytohormones, have shown potential in mitigating salt stress in various plant species. Amongst naturally occurring plant growth stimulants, it has attained enormous attention being rich in thymoquinineand carvacrol in seeds for scavenging free radicals. This research aimed to investigate the effect of Nigella sativa seed extract (NSE) as foliar spray (0, 50, 100 and 150g seeds per liter each) on wheat growth under salt stress (0mM, 75mM and 150mM). Results revealed that salinity decreased growth attributes and accumulation of photosynthetic pigments. On the other hand, salinity stress boosted the contents of malondialdehyde, hydrogen peroxide, glycinebetaine, leaf free proline, Na+ and Cl-. Foliar application of NSEameliorated the negative effects of salinity to considerable extent by enhancing growth traits, chlorophyll contents, glycinebetaine and prolineand decreased Na+, Cl-,malondialdehyde andhydrogen peroxide. This research provides valuable insights into the potential use of NSE as natural and sustainable solution to alleviate salt stress in wheat crop. These findings contribute to the development of eco-friendly strategies for enhancing crop resilience in saline environments, ultimately addressing the global challenge of food security in the face of increasing soil salinity.

Downloads

Download data is not yet available.

Article Details

How to Cite
Faiza Mushtaq, Muhammad Kashif Hanif, Atifa Masood, Bushra Parveen, Iqra Saba, Irum Mustafa, Umair A. Khan, & Asif Naseem. (2023). Mitigating Salt-Induced Damages in Wheat with Foliar-Applied Nigella sativa Seed Extract: A Comprehensive Study. Journal of Advanced Zoology, 45(1), 137–147. https://doi.org/10.53555/jaz.v45i1.3057
Section
Articles
Author Biographies

Faiza Mushtaq

 Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha, Pakistan

Muhammad Kashif Hanif

Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha, Pakistan

Atifa Masood

Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha, Pakistan

Bushra Parveen

Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha, Pakistan

Iqra Saba

Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha, Pakistan

Irum Mustafa

Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha, Pakistan

Umair A. Khan

Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha, Pakistan

Asif Naseem

Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha, Pakistan

References

Bakht, J., M. J. Khan, M. Shafi, M. A. Khan and M. Sharif. 2012. Effect of salinity and ABA application on Proline production and yield in wheat genotypes. Pak. J. Bot., 44: 873-878.

Yokoi, S., R. A. Bressan and P. M. Hasegawa. 2003. Salt stress tolerance of plants. Japan Int. Res. Center Agric., 8: 3-25.

Kausar, A., M.Y. Ashraf, I. Ali, M. Niaz and Q. Abbass. 2012. Evaluation of sorghum varieties/ lines for salt tolerance using physiological indices as screening tool. Pak. J. Bot., 44: 47-52.

Haq, I., A.A. Khan, F.M. Azhar and Ehsanullah. 2010. Genetic basis of variation for salinity tolerance in okra (Abelmoschusesculentus L.). Pak. J. Bot., 42: 1567-1581.

Shrivastava, P. and R. Kumar. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation.Saudi J. Biol. Sci., 22: 123-131.

Shewry, P. R. 2009. Wheat. J. Exp. Bot., 60: 1537-1553.

FAO, 2014. Food and Agriculture Organization, Statistics Division (FAOSTAT) Report. Crops/World Total/Wheat/Area Harvested (2014) United Nations.

Day, L., M.A. Augustin, I.L. Batey and C.W. Wrigley 2006. Wheat-gluten uses and industry needs. Trends Food Sci. Technol., 17: 82-90.

Shewry P. R. and S. J. Hey. 2015. "Review: The contribution of wheat to human diet and health". Food Energy Secur. 4: 178-202.

Goreja, W. G. 2003. Black Seed-Nature’s Miracle Remedy Amazing Herbs Press, New York.World J. Neurosci., 4: 1-5.

Sabira, S., H. M. Asif, N. Akhtar, A. Iqbal, H. Nazar, R. U. Rehman. 2015.Nigella sativa: monograph. J. PharmacognPhytochem., 4: 103-106.

Hussain M.K., Aziz A, Ditta HMA, Azhar MF, El-Shehawi AM, Hussain S, (2021) Foliar application of seed water extract of Nigella sativa improved maize growth in cadmium-contaminated soil. PLoS ONE 16(7): e0254602.

Arnon, D. I. 1994. Copper enzymes in isolated chloroplasts: Polyphenol-oxidase in Beta vulgaris. Plant Physiol. Biochem., 24: 1-15.

Bates, L.S., R.P. Waldan and L.D. Teare. 1973. Rapid determination of free Proline under water stress studies. Plant Soil, 39: 205-207.

Grattan, S. and C. Grieve. 1998. Salinity-mineral nutrient relationships in horticulture crops.IntJ. Hortic. Sci. Technol., 78: 115-127.

Carmak, I. and J. H. Horst. 1991. Effect of aluminum on lipid peroxidation, SOD, CAT and POD activities in root tips of soybean. Physiol. Plant. 83: 463-468.

Velikova, V., I. Yordanov and A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid rain treated bean plants, protective role of exogenous polyamines. Plant Prod. Sci.,151: 59-66.

Golam, M. K., M. Hossain, Y. Murata and A. Hoque. 2017. Antioxidant defense mechanism of salinity tolerance in rice genotype. Direct Rice Sci., 24: 155-162.

Zhu, Y. S., S. Shuail and R. F. Gerald. 2018. Mungbean proteins and peptides nutritional and bioactive properties. Int. J. Food Sci. Nutr., 62: 1290-1296.

Vijendra, P. D., M. H. Kavitha, R. L. G. Basappa, S. G. Jayanna and V. Kumar. 2016. Physiological and biochemical changes in Moth Bean (Vignaaconitifolia L.) under cadimum stress.Am. J. Bot., 1: 1-13.

Khare, T., V. Kumar and K. Kishor. 2015. Na+ and Cl¯ ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma, 252: 1149-1165.

Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59: 651-681.

Hung, S. H., Y. Chih-Wen and C. H. Lin. 2005. Hydrogen peroxide functions as a stress signal in plants hydrogen peroxide functions as a stress signal in plants. Bot. Bull. Acad. Sinica., 46: 1-10.

Parveen, B., A. Masood, N. Khalid, S.Hameed, F.Mushtaq, A.Suleman. 2019. Simultaneous effects of Nigella sativa L. seed extract in improving wheat performance under saline conditions. Fresenius Environmental Bulletin.28:4492-4499.

Ashraf, M. Y., K. Akhtar, G. Sarwar and M. Ashraf. 2005. Role of rooting system in salt tolerance potential of different guar accessions.Agron. Sustain. Dev., 25: 243-249.

Turan, M. A., N. Turkmer, N. Taban. 2007. Effect of NaCl on stomatal resistance and proline chlorophyll, NaCl and K concentrations of lentil plants. Agronomy, 6: 378-381.

Tffouo, V.D., O. F. Wamba, E. Yomb, G.V. Nono and A. A. koa. 2010. Growth, yield, water status and ionic distribution response of three bombara ground nut (Vigna subterranean (L.) verdc.) landraces grown under saline conditions. Int. J. Bot., 6: 53-58.

Agastian P, Kingsley S, Vivekanandan M, et al., 2000. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica. 38: 287-290.

Khan, M. A., H. C. Chen., M. Tania and D. Z. Zhang. 2011. Anticancer activities of Nigella sativa (black cumin).Afr. J. Tradit. Complement Altern. Med., 8: 226-232.

Ermumcu, M. S. K. and N. Şanlıer. 2017. Black cumin (Nigella sativa) and its active components of thymoquinone effects on health food and health sciences. J. Food Health Sci., 3: 170-183.

Mustafa, I.,A. Masood, S. K.Chudhari, B.Parveen, F.Mushtaq, S. Hameed . 2019. Partial relief of salt-stressed wheat (Triticumaestivum L.) in response to foliar-applied black cumin seed extract. Fresenius Environmental Bulletin. 28:4514-4522.

Khan, M., I. Ungar and A. Showalter. 2000. Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplexgriffithii var. stocksii. Ann. Bot., 85: 225-231.

Bayuelo-Jiménez, J., D. Debouck and J. Lynch. 2003. Growth, gas exchange, water relations, and ion composition of Phaseolus species grown under saline conditions.Field Crops Res., 80: 207-222.

Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, Damanhouri ZA, Anwar F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed. 2013 May;3(5):337-52. doi: 10.1016/S2221-1691(13)60075-1. PMID: 23646296; PMCID: PMC3642442.

Tembhurne, S. V., S. Feroz and D. M. Sakarkar. 2014. A review on therapeutic potential of Nigella sativa (kalonji) seeds.J. Med. Plant Res., 8: 166-167.

Sumitahnun, C., D. Anoma, S. Jirawat, P. Wattana and T. Piyada. 2016. Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage. Saudi J. Biol. Sci., 23: 467-477.

Marco, F., M. Bitrian, P. Carrasco, M. V. Rajam, R. Alcazar and F. T. Antonio. 2015. Genetic engineering strategies for abiotic stress tolerance in plants.J. Plant Mol. Biol. Biotechnol., 2: 579-610.

Imlay, J.A. 2003. Pathways of oxidative damage.Annu. Rev. Microbiol.,57: 395-418.

Bartels, D. and R. Sunkar. 2005. Drought and salt tolerance in plants.Crit. Rev. Plant Sci., 24: 23-58.

Qreshi, M. I., M. Z. Abdin, J. Ahamad and M. Iqbal. 2013. Effect of long term salinity on cellular antioxidants, compatible solutes and fatty acid profile of Sweet Annie (Artemisia annua L.). Phytochemistry, 95: 215-223.

Hameed, S., A. Masood, N. Khalid, F. Mushtaq, A. Suleman, M. F. Rashid. 2020. WHEAT (TRITICUM AESTIVUM L.) RESPONSES TO FOLIAR SPRAY OF NIGELLA SATIVA TO ALLEVIATE SALT INDUCED DAMAGES.Fresenius Environmental Bulletin. 29: 9550-9558.

Badary, O. A., R. A. Taha, A. M. Gamal el-Din and M. H. Abdel-Waha. 2003. Thymoquinine is a potent superoxide anion scavenger. Drug Chem. Toxicol., 26: 87-98.

Almeida, P., R. Feron, G. J. Boer and A. H. Boer. 2014. Role of Na+, K+, Cl−, Proline and sucrose concentrations in determining salinity tolerance and their correlation with the expression of multiple genes in tomato.A.o.B. Plants, 6: 1-13.

Upadhyaya, H., M. H. Khan and S. K. Panda. 2007. Hydrogen peroxide induces oxidative stress in detached leaves of Oryza sativa L. Genet. Plant Physiol., 33: 83-95.

Snyrychova, I., A. Ferhan and H. Eva. 2009. Detecting hydrogen peroxide in leaves in vivo – a comparison of methods. Physiol. Plant., 135: 1-18.

Triantaphylidés, C., M. Krischke, F. A. Hoeberichts, B. Ksas, G. Gresser, M. Havaux, F. V. Breusegem and M. J. Mueller. 2008. Singlet oxygen is the major reactive oxygen species involved in photo-oxidative damage to plants. Plant Physiol. Biochem.,148: 960-968.

Tripathy, B. C. and G. K. Pattanayak. 2010. Singlet oxygen-induced oxidative stress in plants. In: Rebeiz CA et al (eds) The chloroplast: basics and applications. Springer, Dordrecht, 1: 397-412.

Lata, C., S. Jha, V. Dixit, N. Sreenivasulu and M. Prasad. 2011. Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars (Setariaitalica L.).Protoplasma., 248: 817–828.

Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci.,7: 405-410.

De-Lacerda, C., J. Cambraia, M. Oliva, H. Ruiz and J. Prisco. 2003. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ. Exp. Bot., 49: 107-120.

Ahmad A, Mishra RK, Vyawahare A, Kumar A, Rehman MU, Qamar W, Khan AQ, Khan R. Thymoquinone (2-Isoprpyl-5-methyl-1, 4-benzoquinone) as a chemopreventive/anticancer agent: Chemistry and biological effects. Saudi Pharm J. 2019 Dec;27(8):1113-1126. doi: 10.1016/j.jsps.2019.09.008. Epub 2019 Sep 25. PMID: 31885471; PMCID: PMC6921197.

Ditta, H.M.A., A. Aziz, M.K.Hussain, N. Mehboob,M. Hussain, S. Farooq and M. F. Azhar (2021) Exogenous application of black cumin (Nigella sativa) seed extract improves maize growth under chromium (Cr) stress, International Journal of Phytoremediation, 23:12, 1231-1243, DOI: 10.1080/15226514.2021.1889965

Most read articles by the same author(s)