Biofertilizer Fertilizer And Food Scarcity Removal: A Path Towards Sustainable Agriculture In India: A Review

Main Article Content

Adrija Nath
Arindum Roy
Srijan Haldar

Abstract

Food scarcity and security have been longstanding challenges faced by
many countries, including India. With a growing population and increasing
demand for food, the need for sustainable agricultural practices has become
more critical than ever. One of the essential components of modern
agriculture is the use of chemical fertilizers, which has significantly
contributed to increasing crop yields and addressing food scarcity. However
prolonged usage of chemical fertilizer not only degrades soil quality and
decreased the agricultural production, but also affects soil, water bodies’
atmosphere and finally human health. The easy and eco-friendly solution to
this growing issue is traditional organic agricultural process however due to
its time consuming characteristics it was not became acceptable method.
Biofertilizers are natural or organic substances containing living
microorganisms that enhance soil fertility and plant nutrition. Via metabolic
processes these microorganisms accelerates nutrient availability for the
plants in the soil. Moreover, this is a cheaper and eco-friendly alternative
which can develop a sustainable agricultural system. In this review we have
discussed regarding the utility of bio-fertilizer usage over chemical
biofertilizer and current status in Indian agriculture system to accepting
biofertilizer usage for sustainable developmen

Downloads

Download data is not yet available.

Article Details

How to Cite
Adrija Nath, Arindum Roy, & Srijan Haldar. (2023). Biofertilizer Fertilizer And Food Scarcity Removal: A Path Towards Sustainable Agriculture In India: A Review. Journal of Advanced Zoology, 44(S5), 2652–2658. https://doi.org/10.53555/jaz.v44iS5.3475
Section
Articles
Author Biographies

Adrija Nath

Research Scholar, Adamas University, Barrackpore, West Bengal, India

Arindum Roy

The Climate Thinker, NGO, Behala, West Bengal, India

Srijan Haldar

Associate professor, Swami Vivekananda University, Barrackpore, West Bengal, India

References

Abdelmoteleb, A. , & Gonzalez-Mendoza, D. (2020). Isolation and identification of phosphate solubilizing

Bacillus spp. from Tamarix ramosissima rhizosphere and their effect on growth of Phaseolus vulgaris under

salinity stress. Geomicrobiology Journal, 37(10), 901-908.

Adeleke, R. A. , Raimi, A. R. , Roopnarain, A. , & Mokubedi, S. M. (2019). Status and prospects of bacterial

inoculants for sustainable management of agroecosystems. Biofertilizers for sustainable agriculture and

environment, 137-172.

Adesemoye, A. O. , & Egamberdieva, D. (2013). Beneficial effects of plant growth-promoting rhizobacteria

on improved crop production: prospects for developing economies. In Bacteria in agrobiology: Crop

productivity (pp. 45-63). Berlin, Heidelberg: Springer Berlin Heidelberg.

Akintokun, A. K. , Ezaka, E. , Akintokun, P. O. , Shittu, O. B. , & Taiwo, L. B. (2019). Isolation, screening

and response of maize to plant growth promoting Rhizobacteria inoculants. Scientia Agriculturae

Bohemica, 50(3), 181-190.

Aloo, B. N. , Tripathi, V. , Makumba, B. A. , & Mbega, E. R. (2022). Plant growth-promoting rhizobacterial

biofertilizers for crop production: The past, present, and future. Frontiers in Plant Science, 13, 1002448.

Bashan, Y. , Puente, M. E. , Myrold, D. D. , & Toledo, G. (1998). In vitro transfer of fixed nitrogen from

diazotrophic filamentous cyanobacteria to black mangrove seedlings. FEMS Microbiology Ecology, 26(3),

-170.

Bhardwaj, D. , Ansari, M. W. , Sahoo, R. K. , & Tuteja, N. (2014). Biofertilizers function as key player in

sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial cell

factories, 13, 1-10.

Bharti, N. , Sharma, S. K. , Saini, S. , Verma, A. , Nimonkar, Y. , & Prakash, O. (2017). Microbial plant

probiotics: problems in application and formulation. Probiotics and plant health, 317-335.

Cakmak, I. , McLaughlin, M. J. , & White, P. (2017). Zinc for better crop production and human health.

Plant and Soil, 411, 1-4.

Franche, C. , Lindström, K. , & Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous

and non-leguminous plants. Plant and Soil, 321(1–2), 35–59.

Goteti, P. K. , Emmanuel, L. D. A. , Desai, S. , & Shaik, M. H. A. (2013). Prospective zinc solubilising

bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L. ). International journal

of microbiology, 2013.

Hassen, A. I. , Bopape, F. L. , & Sanger, L. K. (2016). Microbial inoculants as agents of growth promotion

and abiotic stress tolerance in plants. Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 1:

Research Perspectives, 23-36.

Havukainen, J. , Uusitalo, V. , Koistinen, K. , Liikanen, M. , & Horttanainen, M. (2018). Carbon footprint

evaluation of biofertilizers. International Journal of Sustainable Development and Planning, 13(8), 1050-

Journal of Advanced Zoology

Available online at: https://jazindia. Com 2657

Hungria, M. , Franchini, J. C. , Campo, R. J. , Crispino, C. C. , Moraes, J. Z. , Sibaldelli, R. N. , . . . &

Arihara, J. (2006). Nitrogen nutrition of soybean in Brazil: contributions of biological N2 fixation and N

fertilizer to grain yield. Canadian Journal of Plant Science, 86(4), 927-939.

Jain, A. , Singh, H. B. , & Das, S. (2021). Deciphering plant-microbe crosstalk through proteomics studies.

Microbiological Research, 242, 126590.

Kalimuthu, R. , Suresh, P. , Varatharaju, G. , Balasubramanian, N. , Rajasekaran, K. M. , & Shanmugaiah,

V. (2019). Isolation and characterization of Indole acetic acid [IAA] producing tomato Rhizobacterium

pseudomonas sp VSMKU4050 and its potential for plant growth promotion. International Journal of Current

Microbiology and Applied Sciences, 8(6), 443-455.

Kamran, S. , Shahid, I. , Baig, D. N. , Rizwan, M. , Malik, K. A. , & Mehnaz, S. (2017). Contribution of

zinc solubilizing bacteria in growth promotion and zinc content of wheat. Frontiers in microbiology, 8,

Koskey, G. , Mburu, S. W. , Njeru, E. M. , Kimiti, J. M. , Ombori, O. , & Maingi, J. M. (2017). Potential of

native rhizobia in enhancing nitrogen fixation and yields of climbing beans (Phaseolus vulgaris L. ) in

contrasting environments of Eastern Kenya. Frontiers in plant science, 8, 443.

Li, Z. , Parajulee, M. N. , & Chen, F. (2018). Influence of elevated CO2 on development and food utilization

of armyworm Mythimna separata fed on transgenic Bt maize infected by nitrogen-fixing bacteria. PeerJ, 6,

e5138.

Mahmud, A. A. , Upadhyay, S. K. , Srivastava, A. K. , & Bhojiya, A. A. (2021). Biofertilizers: A Nexus

between soil fertility and crop productivity under abiotic stress. Current Research in Environmental

Sustainability, 3, 100063.

Mbaka, F. K. , Ndukhu, H. O. , & Oloo-Abucheli, G. O. (2022). Use of Cost-Effective Biofertilizers

Interventions for Enhanced food Security and Soil Management Amidst Covid-19 Crisis. Review.

Meena, V. S. , Maurya, B. R. , Verma, J. P. , & Meena, R. S. (Eds. ). (2016). Potassium solubilizing

microorganisms for sustainable agriculture (Vol. 331). New Delhi: Springer.

Melchiorre, M. , De Luca, M. J. , Gonzalez Anta, G. , Suarez, P. , Lopez, C. , Lascano, R. , & Racca, R. W.

(2011). Evaluation of bradyrhizobia strains isolated from field-grown soybean plants in Argentina as

improved inoculants. Biology and Fertility of Soils, 47(1), 81-89.

Menegat, S. , Ledo, A. , & Tirado, R. (2022). Greenhouse gas emissions from global production and use of

nitrogen synthetic fertilisers in agriculture. Scientific Reports, 12(1), 14490.

Muthuraja, R. , & Muthukumar, T. (2021). Isolation and characterization of potassium solubilizing

Aspergillus species isolated from saxum habitats and their effect on maize growth in different soil types.

Geomicrobiol J, 38, 672-685.

Paudyal, S. P. , & Gupta, V. N. P. (2018). Substitution of chemical fertilizer nitrogen through Rhizobium

inoculation technology. Our Nature, 16(1), 43-47.

Ramoneda, J. , Roux, J. J. L. , Frossard, E. , Frey, B. , & Gamper, H. A. (2020). Geographical patterns of

root nodule bacterial diversity in cultivated and wild populations of a woody legume crop. FEMS

microbiology ecology, 96(10), fiaa145.

Reyes-Castillo, A. , Gerding, M. , Oyarzúa, P. , Zagal, E. , Gerding, J. , & Fischer, S. (2019). Plant growthpromoting rhizobacteria able to improve NPK availability: selection, identification and effects on tomato

growth. Chilean journal of agricultural research, 79(3), 473-485.

Rosa, P. A. L. , Galindo, F. S. , Oliveira, C. E. D. S. , Jalal, A. , Mortinho, E. S. , Fernandes, G. C. , . . . &

Teixeira Filho, M. C. M. (2022). Inoculation with plant growth-promoting bacteria to reduce phosphate

fertilization requirement and enhance technological quality and yield of sugarcane. Microorganisms, 10(1),

Sharma, S. K. M. P. , Ramesh, A. , & Joshi, O. P. (2011). Characterization of zinc-solubilizing Bacillus

isolates and their potential to influence zinc assimilation in soybean seeds. Journal of Microbiology and

Biotechnology, 22(3), 352–359.

Singh, J. S. , Kumar, A. , Rai, A. N. , & Singh, D. P. (2016). Cyanobacteria: a precious bio-resource in

agriculture, ecosystem, and environmental sustainability. Frontiers in microbiology, 7, 529.

Singh, R. P. , Singh, R. K. , Singh, S. P. , Srivastava, V. , & Bohra, J. S. (2015). Organic Farming: A need

of sustainable agriculture.

Song, Y. Y. , Liu, J. W. , Li, L. K. , Liu, M. Q. , Chen, X. Y. , & Chen, F. J. (2020). Evaluating the effects

of transgenic Bt rice cultivation on soil stability. Environmental Science and Pollution Research, 27, 17412-

Journal of Advanced Zoology

Available online at: https://jazindia. Com 2658

Song, Y. , Li, Z. , Liu, J. , Zou, Y. , Lv, C. , & Chen, F. (2021). Evaluating the impacts of Azotobacter

chroococcum inoculation on soil stability and plant property of maize crop. Journal of Soil Science and

Plant Nutrition, 21, 824-831.

Soumare, A. , Boubekri, K. , Lyamlouli, K. , Hafidi, M. , Ouhdouch, Y. , & Kouisni, L. (2020). From

isolation of phosphate solubilizing microbes to their formulation and use as biofertilizers: status and needs.

Frontiers in bioengineering and biotechnology, 7, 425.

Sumbul, A. , Ansari, R. A. , Rizvi, R. , & Mahmood, I. (2020). Azotobacter: A potential bio-fertilizer for

soil and plant health management. Saudi journal of biological sciences, 27(12), 3634-3640.

Thies, J. E. , Woomer, P. L. , & Singleton, P. W. (1995). Enrichment of Bradyrhizobium spp populations

in soil due to cropping of the homologous host legume. Soil Biology and Biochemistry, 27(4-5), 633-636.

Tien, T. M. , Gaskins, M. H. , & Hubbell, D. (1979). Plant growth substances produced by Azospirillum

brasilense and their effect on the growth of pearl millet (Pennisetum americanum L. ). Applied and

environmental microbiology, 37(5), 1016-1024.

Vatsyayan, N. , & Ghosh, A. K. (2013). Isolation and characterization of microbes with biofertilizer

potential. IOSR Journal of Environmental Science, Toxicology and Food Technology, 7(4), 5-9.

Wang, Y. , Zhang, G. , Huang, Y. , Guo, M. , Song, J. , Zhang, T. , . . . & Liu, H. (2022). A potential

biofertilizer—Siderophilic bacteria isolated from the rhizosphere of Paris polyphylla var. yunnanensis.

Frontiers in Microbiology, 13, 870413.

Yamazaki, S. , Mardani-Korrani, H. , Kaida, R. , Ochiai, K. , Kobayashi, M. , Nagano, A. J. , . . . & Aoki,

Y. (2021). Field multi-omics analysis reveals a close association between bacterial communities and mineral

properties in the soybean rhizosphere. Scientific reports, 11(1), 8878