Unlocking Nutrient Potential: Harness The Power Of Micro-Nutrient Solubilizing Bacteria: A Review

Main Article Content

Trina Dey
Srijan Haldar

Abstract

Micro-nutrient solubilizing bacteria (MSB) play a pivotal role in the growth
and developmentof plants by enhancing the availability of essential micronutrients in the soil. These bacteria possess unique capabilities to solubilize
otherwise unavailable forms of micro-nutrients, such as iron, zinc, copper,
manganese, and others. As a result, they improve nutrient uptake, plant
health, and overall crop productivity. The use of MSB in agriculture can
reduce reliance on chemical fertilizers, which can be costly and have negative
environmental impacts. By makingmicro-nutrients more available, MSB help
optimize the use of existing soil nutrients.MSB canalso contribute to soil
health and overall environmental sustainability. Additionally, MSB is
adaptable to various soil types and climates, making them suitable for diverse
agricultural settings. Their compatibility with sustainable practices aligns
with efforts to promote environmentally friendly agricultural systems.
Improving nutrient availability promotes balanced ecosystems and reduces
the risk of nutrient runoff, which can harm water bodies. Some MSB has
been reported to induce systemic resistance in plants against certain
pathogens. They trigger the plant's defense mechanisms, making it more
resistant to diseases. This review aims to provide an in-depth understanding
of the mechanisms through which MSBexert their beneficial effects on plants
and the potential implications for sustainable agriculture.It covers various
aspects of MSB, including their identification, functions, interactions with
plants, environmental factors influencing their activity, and their applications
in modern agriculture

Downloads

Download data is not yet available.

Article Details

How to Cite
Trina Dey, & Srijan Haldar. (2023). Unlocking Nutrient Potential: Harness The Power Of Micro-Nutrient Solubilizing Bacteria: A Review. Journal of Advanced Zoology, 44(S5), 2671–2676. https://doi.org/10.53555/jaz.v44iS5.3478
Section
Articles
Author Biographies

Trina Dey

Swami Vivekananda University. Brrackpore, West Bengal, India 

Srijan Haldar

Swami Vivekananda University. Brrackpore, West Bengal, India

References

Andresen, E., Peiter, E., & Küpper, H. (2018). Trace metal metabolism in plants. Journal of Experimental

Botany, 69(5), 909-954.

Chauhan, S. S., Thakur, R., & Sharma, G. D. (2008). Nickel: its availability and reactions in soil. Journal

of Industrial Pollution Control, 24(1), 1-8.

Ferrol González, N., Tamayo, E., & Vargas Gallego, P. A. (2016). The heavy metal paradox in arbuscular

mycorrhizas: from mechanisms to biotechnological applications.

Ferrol, N., Tamayo, E., & Vargas, P. (2016). The heavy metal paradox in arbuscular mycorrhizas: from

mechanisms to biotechnological applications. Journal of experimental botany, erw403.

Freitas, M. A., Medeiros, F. H., Carvalho, S. P., Guilherme, L. R., Teixeira, W. D., Zhang, H., & Paré, P.

W. (2015). Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis

(GBO3). Frontiers in Plant Science, 6, 596.

Ghosh, S., Bal, B., & Das, A. P. (2018). Enhancing manganese recovery from low-grade ores by using

mixed culture of indigenously isolated bacterial strains. Geomicrobiology journal, 35(3), 242-246.

Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L. R., Xu, G., ... & Zhu, J. K. (2020). Plant abiotic

stress response and nutrient use efficiency. Science China Life Sciences, 63, 635-674.

Kaiser, B. N., Gridley, K. L., Ngaire Brady, J., Phillips, T., & Tyerman, S. D. (2005). The role of

molybdenum in agricultural plant production. Annals of botany, 96(5), 745-754.

Kamran, S., Shahid, I., Baig, D. N., Rizwan, M., Malik, K. A., & Mehnaz, S. (2017). Contribution of zinc

solubilizing bacteria in growth promotion and zinc content of wheat. Frontiers in microbiology, 8, 2593.

Kong, W. L., Wang, Y. H., & Wu, X. Q. (2021). Enhanced iron uptake in plants by volatile emissions of

Rahnella aquatilis JZ-GX1. Frontiers in Plant Science, 12, 704000.

Krithika, S., & Balachandar, D. (2016). Expression of zinc transporter genes in rice as influenced by zincsolubilizing Enterobacter cloacae strain ZSB14. Frontiers in plant science, 7, 446.

Lee, Y. J., & George, E. (2005). Contribution of mycorrhizal hyphae to the uptake of metal cations by

cucumber plants at two levels of phosphorus supply. Plant and soil, 278, 361-370.

Liu, X. M., & Zhang, H. (2015). The effects of bacterial volatile emissions on plant abiotic stress

tolerance. Frontiers in Plant Science, 6, 774.

Marastoni, L., Pii, Y., Maver, M., Valentinuzzi, F., Cesco, S., & Mimmo, T. (2019). Role of Azospirillum

brasilense in triggering different Fe chelate reductase enzymes in cucumber plants subjected to both

nutrient deficiency and toxicity. Plant Physiology and Biochemistry, 136, 118-126.

Martínez‐Medina, A., Van Wees, S. C., & Pieterse, C. M. (2017). Airborne signals from Trichoderma

fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid‐dependent defences

in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant, cell & environment, 40(11), 2691-

Journal of Advanced Zoology

Available online at: https://jazindia.com 2676

Miwa, K., Kamiya, T., & Fujiwara, T. (2009). Homeostasis of the structurally important micronutrients,

B and Si. Current Opinion in Plant Biology, 12(3), 307-311.

Mohanty, S., Ghosh, S., Nayak, S., & Das, A. P. (2017). Isolation, identification and screening of

manganese solubilizing fungi from low-grade manganese ore deposits. Geomicrobiology Journal, 34(4),

-316.

Montejano-Ramírez, V., García-Pineda, E., & Valencia-Cantero, E. (2020). Bacterial compound N, Ndimethylhexadecylamine modulates expression of iron deficiency and defense response genes in

Medicago truncatula independently of the jasmonic acid pathway. Plants, 9(5), 624.

Morcillo, R. J., & Manzanera, M. (2021). The effects of plant-associated bacterial exopolysaccharides on

plant abiotic stress tolerance. Metabolites, 11(6), 337. Curie, C., & Briat, J. F. (2003). Iron transport and

signaling in plants. Annual Review of Plant Biology, 54(1), 183-206.

Pishchik, V., Mirskaya, G., Chizhevskaya, E., Chebotar, V., & Chakrabarty, D. (2021). Nickel stresstolerance in plant-bacterial associations. PeerJ, 9, e12230.

Prity, S. A., Sajib, S. A., Das, U., Rahman, M. M., Haider, S. A., & Kabir, A. H. (2020). Arbuscular

mycorrhizal fungi mitigate Fe deficiency symptoms in sorghum through phytosiderophore-mediated Fe

mobilization and restoration of redox status. Protoplasma, 257, 1373-1385.

Prity, S. A., Sajib, S. A., Das, U., Rahman, M. M., Haider, S. A., & Kabir, A. H. (2020). Arbuscular

mycorrhizal fungi mitigate Fe deficiency symptoms in sorghum through phytosiderophore-mediated Fe

mobilization and restoration of redox status. Protoplasma, 257, 1373-1385.

Rajkumar, M., Ae, N., Prasad, M. N. V., & Freitas, H. (2010). Potential of siderophore-producing bacteria

for improving heavy metal phytoextraction. Trends in biotechnology, 28(3), 142-149.

Sanket, A. S., Ghosh, S., Sahoo, R., Nayak, S., & Das, A. P. (2017). Molecular identification of

acidophilic manganese (Mn)-solubilizing bacteria from mining effluents and their application in mineral

beneficiation. Geomicrobiology Journal, 34(1), 71-80.

Shi, Z., Zhang, J., Lu, S., Li, Y., & Wang, F. (2020). Arbuscular mycorrhizal fungi improve the

performance of sweet sorghum grown in a mo-contaminated soil. Journal of Fungi, 6(2), 44.

Shi, Z., Zhang, J., Wang, F., Li, K., Yuan, W., & Liu, J. (2018). Arbuscular mycorrhizal inoculation

increases molybdenum accumulation but decreases molybdenum toxicity in maize plants grown in

polluted soil. RSC advances, 8(65), 37069-37076

Singh, S. K., Wu, X., Shao, C., & Zhang, H. (2022). Microbial enhancement of plant nutrient

acquisition. Stress Biology, 2, 1-14.

Watts-Williams, S. J., & Cavagnaro, T. R. (2018). Arbuscular mycorrhizal fungi increase grain zinc

concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum

vulgare) cultivar. Plant Science, 274, 163-170.

Weisskopf, L., Schulz, S., & Garbeva, P. (2021). Microbial volatile organic compounds in intra-kingdom

and inter-kingdom interactions. Nature Reviews Microbiology, 19(6), 391-404.

Zamioudis, C., Korteland, J., Van Pelt, J. A., van Hamersveld, M., Dombrowski, N., Bai, Y., ... & Pieterse,

C. M. (2015). Rhizobacterial volatiles and photosynthesis‐related signals coordinate MYB 72 expression

in Arabidopsis roots during onset of induced systemic resistance and iron‐deficiency responses. The Plant

Journal, 84(2), 309-322.

Zhang, H., Sun, Y., Xie, X., Kim, M. S., Dowd, S. E., & Paré, P. W. (2009). A soil bacterium regulates

plant acquisition of iron via deficiency‐inducible mechanisms. The Plant Journal, 58(4), 568-577.

Zhang, H., Xie, X., Kim, M. S., Kornyeyev, D. A., Holaday, S., & Paré, P. W. (2008). Soil bacteria

augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. The

Plant Journal, 56(2), 264-273.

Zhou, C., Guo, J., Zhu, L., Xiao, X., Xie, Y., Zhu, J., ... & Wang, J. (2016). Paenibacillus polymyxa

BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition

mechanisms. Plant Physiology and Biochemistry, 105, 162-173.