Nyctanthes arbortristis: In Vitro Efficacy Of Anti-Oxidant Potential And Cytotoxicity Study Of Bark Extracts On Sw982 Rheumatoid Arthritis Cell Line Followed By Phytochemical Profiling By GCMS
DOI:
https://doi.org/10.53555/jaz.v45i6.5016Keywords:
Nyctanthes arbor-tristis, antioxidant activity, phenolics, flavonoids, cytotoxicity, GCMSAbstract
Nyctanthes arbortristis, commonly known as the night-jasmine, is a plant rich in bioactive compounds with potential therapeutic benefits. This study aimed to evaluate the antioxidant properties and cytotoxic effects of Nyctanthes arbortristis bark extracts on SW982 rheumatoid arthritis cell line in vitro. Sequential solvent extraction method was employed to obtain extracts with varying polarities. The antioxidant potential of the extracts was assessed using DPPH, ABTS, NO, and H2O2 radical scavenging assays and total phenolic and flavonoid content determination. Cytotoxicity was evaluated using MTT assay on SW982 cells. Results revealed that the bark extracts exhibited significant antioxidant activity, with the methanol extract showing the highest radical scavenging activity, total phenolic content and total flavonoids contents. Furthermore, the bark extracts demonstrated concentration-dependent cytotoxic effects on SW982 cells, with the ethyl acetate extract exhibiting the most potent cytotoxicity. These findings suggest that Nyctanthes arbortristis bark extracts possess substantial antioxidant potential and cytotoxic effects against SW982 rheumatoid arthritis cells, indicating their potential as therapeutic agents in the management of rheumatoid arthritis. Further investigations are warranted to elucidate the underlying mechanisms and evaluate their efficacy in vivo.
Downloads
References
1. Agarwal, V., Sharma, S., & Upadhyay, P. (2018). Nyctanthes arbor-tristis: A Comprehensive Review on its Phytochemistry and Pharmacology. Journal of Ethnopharmacology, 234, 52-68.
2. Bahorun, T., Neergheen, V.S., Aruoma, O.I. (1996). Phytochemical constituents of Cassia fistula. African Journal of Biotechnology, 5(20), 1530-1540. https://doi.org/10.4314/ajfand.v4i13.71772
3. Benzie, I.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
4. Cai, Y. Z., Sun, M., Xing, J., Luo, Q., & Corke, H. (2004). Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sciences, 74(17), 2157-2184.
5. Chanda, S., & Rakholiya, K. (2011). Combination therapy: Synergism between natural plant extracts and antibiotics against infectious diseases. In Science Against Microbial Pathogens: Communicating Current Research and Technological Advances (Vol. 1, pp. 520-529).
6. Chatterjee, A., & Bhattacharya, S. (2019). Phytochemical and Therapeutic Potential of Nyctanthes arbor-tristis Linn. Pharmacognosy Reviews, 13(26), 82-90.
7. Dutta, A., Biswas, S., & Sengupta, M. (2020). Nyctanthes arbor-tristis: A Pharmacological Update. Journal of Herbal Medicine, 23, 100384.
8. Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford University Press, USA.
9. Halliwell, B., & Gutteridge, J. M. (2015). Free Radicals in Biology and Medicine. Oxford University Press.
10. Hwang, J. Y., Lee, M. K., & Jeong, S. M. (2016). Anti-inflammatory, antioxidant, and antibacterial activities of methanol extract of Sonchus asper and its fractions. Journal of Medicinal Food, 19(5), 451-460.
11. Kumar, A., & Bajpai, V. K. (2017). Anti-inflammatory and Antioxidant Activity of Nyctanthes arbor-tristis Bark Extracts. Journal of Ayurveda and Integrative Medicine, 8(4), 243-247.
12. Kumari, R., Mishra, R. C., Sheoran, R., & Yadav, J. P. (2020). Fractionation of antimicrobial compounds from Acacia nilotica twig extract against oral pathogens. Biointerface Res. Appl. Chem, 10, 7097-7105.
13. Manzocco, L., Anese, M., & Nicoli, M. C. (1998). Antioxidant properties of tea extracts as affected by processing. LWT-Food Science and Technology, 31(7-8), 694-698. https://doi.org/10.1006/fstl.1998.0491
14. Martins, S., Mussatto, S. I., Martinez-Avila, G., Montañez-Saenz, J., Aguilar, C. N., & Teixeira, J. A. (2011). Bioactive phenolic compounds: Production and extraction by solid-state fermentation. Bioresource Technology, 101(12), 4389-4398.
15. Morgan, D. M. (1998). Tetrazolium (MTT) assay for cellular viability and activity. Polyamine protocols, 179-184. https://doi.org/10.1385/0-89603-448-8:179
16. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63.
17. Papas, A. M. (Ed.). (2019). Antioxidant status, diet, nutrition, and health. CRC press.
18. Parekh, J., Chanda, S.V. (2007). In vitro antimicrobial activity and phytochemical analysis of some Indian medicinal plants. Turkish Journal of Biology, 31(1), 53-58.
19. Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63(7), 1035-1042.
20. Pyrzynska, K., Pekal, A. (2013). Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food samples. Analytical Methods, 5(17), 4288-4295. https://doi.org/10.1039/C3AY40367J
21. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
22. Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152-159.
23. Scott, D. L., Wolfe, F., & Huizinga, T. W. J. (2010). Rheumatoid arthritis. The Lancet, 376(9746), 1094-1108.
24. Singh, G., Maurya, S., de Lampasona, M. P., & Catalan, C. (2002). Chemical constituents, antimicrobial investigations, and antioxidant potentials of Anethum graveolens L. essential oil and acetone extract: Part 52. Journal of Food Science, 67(2), 461-465.
25. Singh, R., Sharma, J., & Garg, V. K. (2020). Cytotoxic and Apoptotic Effects of Nyctanthes arbor-tristis Bark Extracts on Human Cancer Cell Lines. Journal of Cancer Research and Therapeutics, 16(3), 486-492.
26. Singh, S., Singh, M., Maurya, S., & Singh, G. (2012). Antioxidant potential of peel extracts of Amomum subulatum Roxb. Journal of Food Biochemistry, 36(5), 563-570.
27. Smolen, J. S., Aletaha, D., & McInnes, I. B. (2016). Rheumatoid arthritis. The Lancet, 388(10055), 2023-2038.
28. Tung, Y. T., Wu, J. H., Kuo, Y. H., Chang, S. T. (2009). Antioxidant activities of natural phenolic compounds from Acacia confusa bark. Bioresource Technology, 100(19), 5095-5099.
29. Wolfe, K., Wu, X., Liu, R.H. (2003). Antioxidant activity of apple peels. Journal of Agricultural and Food Chemistry, 51(3), 609-614. https://doi.org/10.1021/jf020782a
30. Wong, C. C., Li, H. B., Cheng, K. W., & Chen, F. (2006). A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chemistry, 97(4), 705-711.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Shammi Sharma, Jaya Prakash Yadav
This work is licensed under a Creative Commons Attribution 4.0 International License.