Neuroprotective role of agmatine in prenatal acute ethanol exposure induce alterations in rats

Main Article Content

Mayur B. Kale
Nitu L. Wankhede
Aarti Bansode
Chandrashekhar D. Upasani
Aman B. Upaganlawar

Abstract

The present study investigates the impact of agmatine, a neuromodulator with neuroprotective and anxiolytic properties, on behavioral changes associated with prenatal ethanol exposure in rats. The research focuses on the vulnerability of adolescents to alcohol-related problems and explores the potential link between prenatal alcohol exposure, anxiety, and adolescent alcohol use. The study also delves into the neurotoxic effects of ethanol on social behavior, cognitive function, and emotional regulation. The pregnant (GD12) Sprague Dawley rats were exposed to ethanol 2.5 g/kg, 20% v/v followed by a second i.p. injection of 1.25 g/kg ethanol and administered agmatine, along with its modulators, during adolescence. The results reveal that prenatal ethanol exposure induces behavioral changes such as increased locomotor activity, anxiety, social interaction deficits, and depression-like behavior. Agmatine administration, particularly at doses of 40 and 80 mg/kg, mitigates these effects, indicating its potential therapeutic role. Moreover, agmatine treatment improves recognition memory impaired by ethanol exposure and reduces oxidative stress, emphasizing its neuroprotective properties. In conclusion, the study suggests that agmatine holds promise in addressing the behavioural and neurochemical alterations induced by prenatal ethanol exposure during adolescence. The findings contribute to understanding the potential therapeutic capabilities of agmatine in mitigating the adverse consequences of early alcohol exposure on brain function and behaviour.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mayur B. Kale, Nitu L. Wankhede, Aarti Bansode, Chandrashekhar D. Upasani, & Aman B. Upaganlawar. (2024). Neuroprotective role of agmatine in prenatal acute ethanol exposure induce alterations in rats. Journal of Advanced Zoology, 45(1), 1243–1253. https://doi.org/10.53555/jaz.v45i1.3694
Section
Articles
Author Biographies

Mayur B. Kale

SNJB’s Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra- India- 423101

Nitu L. Wankhede

SNJB’s Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra- India- 423101

Aarti Bansode

Smt. Kishoritai Bhoyar College of Pharmacy, kamptee, Nagpur, Maharashtra, India- 441002

Chandrashekhar D. Upasani

SNJB’s Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra- India- 423101

Aman B. Upaganlawar

SNJB’s Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra- India- 423101

References

Aglawe, M. M., Kale, M. B., Rahangdale, S. R., Kotagale, N. R., Umekar, M. J., & Taksande, B. G. (2021). Agmatine improves the behavioral and cognitive impairments associated with chronic gestational ethanol exposure in rats. Brain Research Bulletin, 167, 37–47. https://doi.org/10.1016/ j.brainresbull.2020.11.015

Aglawe, M. M., Taksande, B. G., Kuldhariya, S. S., Chopde, C. T., Umekar, M. J., & Kotagale, N. R. (2014). Participation of central imidazoline binding sites in antinociceptive effect of ethanol and nicotine in rats. Fundamental & Clinical Pharmacology, 28(3), 284–293. https://doi.org/10.1111/fcp.12034

Auguet, M., Viossat, I., Marin, J.-G., & Chabrier, P.-E. (1995). Selective Inhibition of Inducible Nitric Oxide Synthase by Agmatine. Japanese Journal of Pharmacology, 69(3), 285–287. https://doi.org/ 10.1254/jjp.69.285

Bondy, S. C. (1992). Ethanol toxicity and oxidative stress. Toxicology Letters, 63(3), 231–241. https://doi.org/10.1016/0378-4274(92)90086-Y

Dandekar, M. P., Singru, P. S., Kokare, D. M., Lechan, R. M., Thim, L., Clausen, J. T., & Subhedar, N. K. (2008). Importance of Cocaine- and Amphetamine-Regulated Transcript Peptide in the Central Nucleus of Amygdala in Anxiogenic Responses Induced by Ethanol Withdrawal. Neuropsychopharmacology, 33(5), 1127–1136. https://doi.org/10.1038/sj.npp.1301516

Diaz, M. R., Mooney, S. M., & Varlinskaya, E. I. (2016). Acute prenatal exposure to ethanol on gestational day 12 elicits opposing deficits in social behaviors and anxiety-like behaviors in Sprague Dawley rats. Behavioural Brain Research, 310, 11–19. https://doi.org/10.1016/j.bbr.2016.05.003

Dixit, M. P., Thakre, P. P., Pannase, A. S., Aglawe, M. M., Taksande, B. G., & Kotagale, N. R. (2014). Imidazoline binding sites mediates anticompulsive-like effect of agmatine in marble-burying behavior in mice. European Journal of Pharmacology, 732, 26–31. https://doi.org/10.1016/j.ejphar.2014.02.045

Dixit, M., Upadhya, M., Taksande, B., Raut, P., Umekar, M., & Kotagale, N. (2018). Neuroprotective effect of agmatine in mouse spinal cord injury model: Modulation by imidazoline receptors. Journal of Natural Science, Biology and Medicine, 9(2), 115. https://doi.org/10.4103/jnsbm.JNSBM_239_17

Ellman, G. L. (1959). Tissue Su~yd~l Groups. In ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS (Vol. 82).

Galea, E., Reis, D. J., Fox, E. S., Xu, H., & Feinstein, D. L. (1996). CD 14 mediates endotoxin induction of nitric oxide synthase in cultured brain glial cells. Journal of Neuroimmunology, 64(1), 19–28. https://doi.org/10.1016/0165-5728(95)00143-3

Gibson, D. A., Harris, B. R., Rogers, D. T., & Littleton, J. M. (2002). Radioligand binding studies reveal agmatine is a more selective antagonist for a polyamine-site on the NMDA receptor than arcaine or ifenprodil. Brain Research, 952(1), 71–77. https://doi.org/10.1016/S0006-8993(02)03198-0

Grant, B. F., Stinson, F. S., & Harford, T. C. (2001). Age at onset of alcohol use and DSM-IV alcohol abuse and dependence: A 12-year follow-up. Journal of Substance Abuse, 13(4), 493–504. https://doi.org/10.1016/S0899-3289(01)00096-7

Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry, 126(1), 131–138. https://doi.org/10.1016/0003-2697(82)90118-X

Halaris, A., & Plietz, J. (2007). Agmatine. CNS Drugs, 21(11), 885–900. https://doi.org/10.2165/ 00023210-200721110-00002

Hamilton, D. A., Magcalas, C. M., Barto, D., Bird, C. W., Rodriguez, C. I., Fink, B. C., Pellis, S. M., Davies, S., & Savage, D. D. (2014). Moderate Prenatal Alcohol Exposure and Quantification of Social Behavior in Adult Rats. Journal of Visualized Experiments, 94. https://doi.org/10.3791/52407

Haorah, J., Knipe, B., Leibhart, J., Ghorpade, A., & Persidsky, Y. (2005). Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction. Journal of Leukocyte Biology, 78(6), 1223–1232. https://doi.org/10.1189/jlb.0605340

Hernández, J. A., López-Sánchez, R. C., & Rendón-Ramírez, A. (2016). Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage. Oxidative Medicine and Cellular Longevity, 2016, 1–15. https://doi.org/10.1155/2016/1543809

Hingson, R. W., Heeren, T., & Winter, M. R. (2006). Age at Drinking Onset and Alcohol Dependence. Archives of Pediatrics & Adolescent Medicine, 160(7), 739. https://doi.org/10.1001/archpedi.160.7.739

Kale, M., Nimje, N., Aglawe, M. M., Umekar, M., Taksande, B., & Kotagale, N. (2020). Agmatine modulates anxiety and depression-like behaviour in diabetic insulin-resistant rats. Brain Research, 1747, 147045. https://doi.org/10.1016/j.brainres.2020.147045

Kim, H., Heo, H.-I., Kim, D.-H., Ko, I.-G., Lee, S.-S., Kim, S.-E., Kim, B.-K., Kim, T.-W., Ji, E.-S., Kim, J.-D., Shin, M.-S., Choi, Y.-W., & Kim, C.-J. (2011). Treadmill exercise and methylphenidate ameliorate symptoms of attention deficit/hyperactivity disorder through enhancing dopamine synthesis and brain-derived neurotrophic factor expression in spontaneous hypertensive rats. Neuroscience Letters, 504(1), 35–39. https://doi.org/10.1016/j.neulet.2011.08.052

Kokare, D. M., Dandekar, M. P., Singru, P. S., Gupta, G. L., & Subhedar, N. K. (2010). Involvement of α-MSH in the social isolation induced anxiety- and depression-like behaviors in rat. Neuropharmacology, 58(7), 1009–1018. https://doi.org/10.1016/j.neuropharm.2010.01.006

Koretz, B., Ahern, K. von B., Wang, N., Lustig, H. S., & Greenberg, D. A. (1994). Pre- and post-synaptic modulators of excitatory neurotransmission: comparative effects on hypoxia/hypoglycemia in cortical cultures. Brain Research, 643(1–2), 334–337. https://doi.org/10.1016/0006-8993(94)90043-4

Kotagale, N. R., Ali, M. T., Chopde, C. T., Umekar, M. J., & Taksande, B. G. (2018a). Agmatine inhibits nicotine withdrawal induced cognitive deficits in inhibitory avoidance task in rats: Contribution of α 2 -adrenoceptors. Pharmacology Biochemistry and Behavior, 167, 42–49. https://doi.org/10.1016/ j.pbb.2018.03.002

Kotagale, N. R., Ali, M. T., Chopde, C. T., Umekar, M. J., & Taksande, B. G. (2018b). Agmatine inhibits nicotine withdrawal induced cognitive deficits in inhibitory avoidance task in rats: Contribution of α 2 -adrenoceptors. Pharmacology Biochemistry and Behavior, 167, 42–49. https://doi.org/10.1016/ j.pbb.2018.03.002

Kotagale, N. R., Taksande, B. G., & Inamdar, N. N. (2019). Neuroprotective offerings by agmatine. NeuroToxicology, 73, 228–245. https://doi.org/10.1016/j.neuro.2019.05.001

Laube, G., & Bernstein, H.-G. (2017). Agmatine: multifunctional arginine metabolite and magic bullet in clinical neuroscience? Biochemical Journal, 474(15), 2619–2640. https://doi.org/10.1042/BCJ20170007

Li, B.-M., & Mei, Z.-T. (1994). Delayed-response deficit induced by local injection of the α2-adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys. Behavioral and Neural Biology, 62(2), 134–139. https://doi.org/10.1016/S0163-1047(05)80034-2

Littleton, J. M., Lovinger, D., Liljequist, S., Ticku, R., Matsumoto, I., & Barron, S. (2001). Role of Polyamines and NMDA Receptors in Ethanol Dependence and Withdrawal. Alcoholism: Clinical and Experimental Research, 25(s1). https://doi.org/10.1111/j.1530-0277.2001.tb02387.x

Liu, P., & Bergin, D. H. (2009). Differential effects of i.c.v. microinfusion of agmatine on spatial working and reference memory in the rat. Neuroscience, 159(3), 951–961. https://doi.org/10.1016/ j.neuroscience.2009.01.039

Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural Mechanisms of Spatial Selective Attention in Areas V1, V2, and V4 of Macaque Visual Cortex. Journal of Neurophysiology, 77(1), 24–42. https://doi.org/10.1152/jn.1997.77.1.24

Lugo, J. N., Marino, M. D., Cronise, K., & Kelly, S. J. (2003). Effects of alcohol exposure during development on social behavior in rats. Physiology & Behavior, 78(2), 185–194. https://doi.org/10.1016/ S0031-9384(02)00971-X

Martin, D. J., Garske, J. P., & Davis, M. K. (2000). Relation of the therapeutic alliance with outcome and other variables: A meta-analytic review. Journal of Consulting and Clinical Psychology, 68(3), 438–450. https://doi.org/10.1037/0022-006X.68.3.438

Neis, V. B., Moretti, M., Bettio, L. E. B., Ribeiro, C. M., Rosa, P. B., Gonçalves, F. M., Lopes, M. W., Leal, R. B., & Rodrigues, A. L. S. (2016). Agmatine produces antidepressant-like effects by activating AMPA receptors and mTOR signaling. European Neuropsychopharmacology, 26(6), 959–971. https://doi.org/10.1016/j.euroneuro.2016.03.009

Olmos, G., DeGregorio‐Rocasolano, N., Regalado, M. P., Gasull, T., Boronat, M. A., Trullas, R., Villarroel, A., Lerma, J., & García‐Sevilla, J. A. (1999). Protection by imidazol(ine) drugs and agmatine of glutamate‐induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. British Journal of Pharmacology, 127(6), 1317–1326. https://doi.org/10.1038/sj.bjp.0702679

Pinto, C., Cestero, J. J., Rodríguez-Galdón, B., & Macías, P. (2014). Xanthohumol, a prenylated flavonoid from hops ( Humulus lupulus L.), protects rat tissues against oxidative damage after acute ethanol administration. Toxicology Reports, 1, 726–733. https://doi.org/10.1016/j.toxrep.2014.09.004

Raasch, W., Schaè, U., Chun, J., & Dominiak, P. (2001). Biological signi®cance of agmatine, an endogenous ligand at imidazoline binding sites. In British Journal of Pharmacology (Vol. 133). www.nature.com/bjp

Reis, D. J., & Regunathan, S. (1998). Agmatine: an endogenous ligand at imidazoline receptors may be a novel neurotransmitter in brain. Journal of the Autonomic Nervous System, 72(2–3), 80–85. https://doi.org/10.1016/S0165-1838(98)00091-5

Reis, D. J., & Regunathan, S. (2000a). Is agmatine a novel neurotransmitter in brain? Trends in Pharmacological Sciences, 21(5), 187–193. https://doi.org/10.1016/S0165-6147(00)01460-7

Reis, D. J., & Regunathan, S. (2000b). Is agmatine a novel neurotransmitter in brain? Trends in Pharmacological Sciences, 21(5), 187–193. https://doi.org/10.1016/S0165-6147(00)01460-7

Saitoh, A., Yoshikawa, Y., Onodera, K., & Kamei, J. (2005). Role of δ-opioid receptor subtypes in anxiety-related behaviors in the elevated plus-maze in rats. Psychopharmacology, 182(3), 327–334. https://doi.org/10.1007/s00213-005-0112-6

Schmidt, N. B., Buckner, J. D., & Keough, M. E. (2007). Anxiety Sensitivity As a Prospective Predictor of Alcohol Use Disorders. Behavior Modification, 31(2), 202–219. https://doi.org/10.1177/ 0145445506297019

Seo, T.-B., Cho, H.-S., Shin, M.-S., Kim, C.-J., Ji, E.-S., & Baek, S.-S. (2013). Treadmill exercise improves behavioral outcomes and spatial learning memory through up-regulation of reelin signaling pathway in autistic rats. Journal of Exercise Rehabilitation, 9(2), 220–229. https://doi.org/10. 12965/jer.130003

Sun, A. Y., Ingelman‐Sundberg, M., Neve, E., Matsumoto, H., Nishitani, Y., Minowa, Y., Fukui, Y., Bailey, S. M., Patel, V. B., Cunningham, C. C., Zima, T., Fialova, L., Mikulikova, L., Popov, P., Malbohan, I., Janebova, M., Nespor, K., & Sun, G. Y. (2001). Ethanol and Oxidative Stress. Alcoholism: Clinical and Experimental Research, 25(s1). https://doi.org/10.1111/j.1530-0277.2001.tb02402.x

Taksande, B. G., Chopde, C. T., Umekar, M. J., & Kotagale, N. R. (2015). Agmatine attenuates hyperactivity and weight loss associated with activity-based anorexia in female rats. Pharmacology Biochemistry and Behavior, 132, 136–141. https://doi.org/10.1016/j.pbb.2015.03.005

Taksande, B. G., Kotagale, N. R., Gawande, D. Y., Bharne, A. P., Chopde, C. T., & Kokare, D. M. (2014). Neuropeptide Y in the central nucleus of amygdala regulates the anxiolytic effect of agmatine in rats. European Neuropsychopharmacology, 24(6), 955–963. https://doi.org/10.1016/j.euroneuro.2013.12.002

Taksande, B. G., Kotagale, N. R., Patel, M. R., Shelkar, G. P., Ugale, R. R., & Chopde, C. T. (2010). Agmatine, an endogenous imidazoline receptor ligand modulates ethanol anxiolysis and withdrawal anxiety in rats. European Journal of Pharmacology, 637(1–3), 89–101. https://doi.org/10.1016/ j.ejphar.2010.03.058

Taksande, B. G., Kotagale, N. R., Tripathi, S. J., Ugale, R. R., & Chopde, C. T. (2009). Antidepressant like effect of selective serotonin reuptake inhibitors involve modulation of imidazoline receptors by agmatine. Neuropharmacology, 57(4), 415–424. https://doi.org/10.1016/j.neuropharm.2009.06.035

Thomas, J. D., Melcer, T., Weinert, S., & Riley, E. P. (1998). Neonatal Alcohol Exposure Produces Hyperactivity in High-Alcohol-Sensitive But Not in Low-Alcohol-Sensitive Rats. Alcohol, 16(3), 237–242. https://doi.org/10.1016/S0741-8329(98)00008-1

Vetreno, R. P., Hall, J. M., & Savage, L. M. (2011). Alcohol-related amnesia and dementia: Animal models have revealed the contributions of different etiological factors on neuropathology, neurochemical dysfunction and cognitive impairment. Neurobiology of Learning and Memory, 96(4), 596–608. https://doi.org/10.1016/j.nlm.2011.01.003

Wang, W.-P., Iyo, A. H., Miguel-Hidalgo, J., Regunathan, S., & Zhu, M.-Y. (2006). Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons. Brain Research, 1084(1), 210–216. https://doi.org/10.1016/j.brainres.2006.02.024

Wills, E. D. (1966). Mechanisms of lipid peroxide formation in animal tissues. The Biochemical Journal, 99(3), 667–676. https://doi.org/10.1042/BJ0990667

Wilson, S. E., Chen, M., & Darji, H. (2016). Rapid-Acting Antidepressants and Underlying Mechanisms. International Journal of Public Health Science (IJPHS), 5(4), 347–353.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.