Utilization The Fungus of Mycorrhriza to Control Bean Root Rot Caused by Pathogenic Fungi Rhizoctonia Solani

Main Article Content

Alaa M. Alrudainy

Abstract

The study was conducted for the purpose of knowing the effect of the mycorrhizal fungus on controlling the root rot disease caused by the pathogenic fungus Rhizoctonia solani, the field experiment included four treatments and each treatment had five replicates, the treatments were as follows (Control, Mycorrhiza, Rhizoctonia, Mycorrhiza, Rhizoctonia), where the percentage of infection with the disease was (0.00, 0.00, 96.91, 63.58), respectively. while the growth indicators were studied, including plant height (106.24 , 112.58, 81.64 , 101,72 ) respectively , the average number of plant leaves for the above treatment , respectively (24.98 , 27.14 , 17.50 , 26.16 ) and the root length (23.40 , 30.32 , 10.32 , 28.42 ) , root wet weight ( 4.17 , 6.96 , 0.98 , 5.13 ) the mycorrhizal fungus treatment was superior in all studied indicators, followed by the treatment of mycorrhizal + rhizoctonia, while the pathogen treatment recorded the lowest percentage in all indicators , There were significant differences at a significant level of 0.05% between the treatments

Downloads

Download data is not yet available.

Article Details

How to Cite
Alaa M. Alrudainy. (2022). Utilization The Fungus of Mycorrhriza to Control Bean Root Rot Caused by Pathogenic Fungi Rhizoctonia Solani. Journal of Advanced Zoology, 43(1), 96–103. https://doi.org/10.17762/jaz.v43i1.140
Section
Articles

References

Bartz , F. E., Cubeta , M. A., Toda , T., Naito , S. and Ivors , K. L. 2010 . An in planta method for assessing the role of basidiospores in Rhizoctonia foliar disease of tomato. Plant Disease , 94: 515 -520 . DOI: https://doi.org/10.1094/PDIS-94-5-0515

Carmen, M.A., Z.J. Carmen, S. Salvador, N. Diego, R.M. Maria Teresa and T. Maria (2005). Detection for agronomic traits in faba bean (Vicia faba L.). Agric. Conspec. Sci., 70(3), 17-20.

Hoeksema, J. D., Chaudhary, V. B., Gehring , C. A., Johnson , N . C., Karst , J., Koide , R. T., Pringle , A., Zabinski , C., Bever , J. D. and Moore , J. C. 2010 . A meta -analysis of context -dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 13: 394-407. DOI: https://doi.org/10.1111/j.1461-0248.2009.01430.x

Aljuboori, F. K., Ibrahim, B. Y., & Mohamed, A. H. (2022). BIOLOGICAL CONTROL OF THE COMPLEX DISEASE OF Rhizoctonia solani AND ROOT-KNOT NEMATODE Meloidogyne javanica ON CHICKPEA BY Glomus spp. AND Pseudomonas sp. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 53(3), 669-676. DOI: https://doi.org/10.36103/ijas.v53i3.1577

Jacott , C. N., Murray , J. D. and Ridout , C. J. 2017 . Trade -offs in arbuscular mycorrhizal symbiosis: disease resistance, growth responses and perspectives for crop breeding. Agronomy , 7: 75 DOI: https://doi.org/10.3390/agronomy7040075

Abbasi, P. A., Conn, K. L., & Lazarovits, G. (2004). Suppression of Rhizoctonia and Pythium damping-off of radish and cucumber seedlings by addition of fish emulsion to peat mix or soil. Canadian Journal of Plant Pathology, 26(2), 177-187. DOI: https://doi.org/10.1080/07060660409507129

Justyna , N., Magdalena , S. and Urszula , M. 2017 . Trichoderma atroviride enhances phenolic synthesis and cucumber protection against Rhizoctonia solani. Plant Protection Science , 54: 17 -23 . DOI: https://doi.org/10.17221/126/2016-PPS

Liu , K., McInroy , J. A., Hu , C. H. and Kloepper , J. W. 2018 . Mixtures of plant - growth -promoting rhizobacteria enhance biological control of multiple plant diseases and plant -growth promotion in the presence of pathogens. Plant Disease , 102: 67 -72 . DOI: https://doi.org/10.1094/PDIS-04-17-0478-RE

Manganiello , G., Sacco , A., Ercolano , M. R., Vinale , F., Lanzuise , S., Pascale , A., Napolitano , M., Lombardi , N., Lorito , M. and Woo , S. L. 2018 . Modulation of tomato response to Rhizoctonia solani by Trichoderma harzianum and its secondary metabolite harzianic acid. Frontiers in Microbiology, 9: 1966 DOI: https://doi.org/10.3389/fmicb.2018.01966

Mona, A.M., M.A. Sabah and A.M. Rehab (2011). Influence of potassium sulfate on faba bean yield and quality. Australian Journal of Basic and Applied Sciences, 5(3), 87-95.

Saberi , M., Sarpeleh , A., Askary , H. and Rafiei , F. 2013 . The effectiveness of wood vinegar in controlling Rhizoctonia solani and Sclerotinia sclerotiorum in green house -cucumber. International Journal of Agricultural Research and Natural Resources, 1: 3 8 -43 .

Singh, A.K., N. Chandra, R.C. Bharati and S.K. Dimree (2010) Effect of seed size and seeding depth on Fava bean (Vicia fava L.) productivity. Environmental Ecology, 28(3A), 1722-1527.

Thakur , M., Sahu , N. R., Tiwari , P. and Kotasthane , A. 2018 . Combination of Azoxystrobin+ Difenocanazole provides effective management of sheath blight of

Vinale , F., Marra , R., Scala , F., Ghisalberti , E., Lorito , M. and Sivasithamparam , K. 2006 . Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Letters in Applied Microbiology , 43: 143 -148 . DOI: https://doi.org/10.1111/j.1472-765X.2006.01939.x

Hawtin, G. C. (1983). Background and history of faba bean production. In. Hebblethwaite, PD (Ed.). The Faba Bean (Vicia faba L.): A Basis of Improvement . DOI: https://doi.org/10.1007/978-94-009-7499-9

Habte, M., Zhang, Y. C., & Schmitt, D. P. (1999). Effectiveness of Glomus species in protecting white clover against nematode damage. Canadian Journal of Botany, 77(1), 135-139. DOI: https://doi.org/10.1139/b98-188

Harrison, M. J. (1999). Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annual review of plant biology, 50(1), 361-389. DOI: https://doi.org/10.1146/annurev.arplant.50.1.361

Kasumbwe, K., Venugopala, K. N., Mohanlall, V., & Odhav, B. (2014). Antimicrobial and antioxidant activities of substituted halogenated coumarins. Journal of medicinal plants research, 8(5), 274-281. DOI: https://doi.org/10.5897/JMPR2013.4419

Khakpour, O., & Khara, J. (2012). Spore density and root colonization by arbuscular mycorrhizal fungi in some species in the northwest of Iran. International research journal of applied and basic sciences, 3(5), 977-982

Lewandowski, T. J. (2012). The Effect of Arbuscular Mycorrhizal Fungal Diversity on Plant Pathogen Defense (Doctoral dissertation, University of Guelph).

Mahdi, S.S .; Hassan, G.I .; Samoon, S.A .; Rather, H.A ; Dar, S.A and Zehra, B. 2010. Bio – fertilizers in organic agriculture . Journal of Phytology ,2 (10 ) : 42 – 54

Manila, R., & Nelson, R. (2013). Nutrient uptake and promotion of growth by Arbuscular Mycorrhizal Fungi in Tomato and their role in Bio-protection against the tomato wilt pathogen. Journal of Microbiology and Biotechnology Research, 3(4), 42-46 .

McKinney, H. (1923). INFLUENCE OF SOIL TEMPERATURE AND MOISTURE ON INFECTION OF WHEAT SEEDLINGS BY HELMIN. Journal of agricultural research, 26, 195.

Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British mycological Society, 55(1), 158-IN181 DOI: https://doi.org/10.1016/S0007-1536(70)80110-3

Pozo, M. J., Cordier, C., Dumas‐Gaudot, E., Gianinazzi, S., Barea, J. M., & Azcón‐Aguilar, C. (2002). Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of experimental botany, 53(368), 525-534. DOI: https://doi.org/10.1093/jexbot/53.368.525

Reddy, B. N., Raghavender, C. R., & Sreevani, A. (2006). Approach for enhancing mycorrhiza-mediated disease resistance of tomato damping-off. Indian Phytopathol, 59(3), 299-304.

Rashad, Y. M., El-Sharkawy, H. H., & Elazab, N. T. (2022). Ascophyllum nodosum Extract and Mycorrhizal Colonization Synergistically Trigger Immune Responses in Pea Plants against Rhizoctonia Root Rot, and Enhance Plant Growth and Productivity. Journal of Fungi, 8(3), 268. DOI: https://doi.org/10.3390/jof8030268

Sharma, D., Kapoor, R., & Bhatnagar, A. K. (2009). Differential growth response of Curculigo orchioides to native arbuscular mycorrhizal fungal (AMF) communities varying in number and fungal components. European Journal of Soil Biology, 45(4), 328-333. DOI: https://doi.org/10.1016/j.ejsobi.2009.04.005

Tabin, T., Arunachalam, A., Shrivastava, K., & Arunachalam, K. (2009). Effect of arbuscular mycorrhizal fungi on damping-off disease in Aquilaria agallocha Roxb. seedlings. Tropical Ecology, 50(2), 243.

Van Leur, J.A.G.; R.J. South well; and J.M. Mackie. (2008). Aphanomyces root rot on faba bean in northern NSW . Austeralasian plant disease notes ,3(1), 8-9 DOI: https://doi.org/10.1071/DN08004