Magnetic Treatment Of Salted Irrigation Water And Seeds: Its Effects On Vegetable Crop Yield And Nutrition Value Of Spinach (Spinacia Oleracea L)

Main Article Content

Ibrahim, M. A.
Gomaa, F.A.
Hozayen M
Kotb, M. S.

Abstract

Pot experiment was conducted in Qalin Center, Kafr El-Sheikh Governorate, Egypt under the natural conditions of greenhouse during the two growing winter seasons of 2020/21 and 2021/22. The experiment aims to evaluate the effect of two magneto-priming seed treatments (Un-magnetized seeds (U-MS) and magnetized seeds (MS), two magnetized water (Un-magnetized water (U-MW) and magnetized water (MW) under two levels of irrigation water salinity stresses (2500 and 5000 ppm) on seedling emergence, vegetative growth and productivity of spinach plants. The eight treatments laid out in completely randomized design (CRD) with three replications. Results show that sowing magnetized spinach seeds and irrigation pots with magnetized saline water (2500 or 5000 ppm) significantly out-performed sowing un-magnetized spinach seeds and irrigated with un-magnetized water for all tested vegetative growth parameters at the age of 15, 30, 45, and 55 days. Regarding magnetized seed treatment, the magnetized seed treatments significantly surpassed the untreated seed in all recorded leaves growth parameters (i.e., leaves numbers plant-1, leave length (cm), leave width (cm) and Leave Area (LA; cm2)), plant growth parameters (i.e., plant height (cm), plant fresh and dry weight in gram), root growth parameters (root length and width (cm), root fresh and dry weight in gram) and total chlorophyl (spam) at the age of 15, 30, 45, and 55 days. The percent of improvement, ranged from 2.95 to 20.92% in leaves growth parameters, 8.80-20.45% in plant growth, 13.21-17.18% in root growth and 4.40-4.82% in total chlorophyl in leaves. Similar positive effects were recorded under magnetized water compared to untreated water treatments. Where the positive effects, ranged from 3.17 to 39.96% in leaves growth parameters, 3.88-24.81% in plant growth, 27.77-66.01% in root growth and 1.95-6.48% in total chlorophyl in leaves at the age of 15, 30, 45, and 55 days. As well as both factors (magnetized seed or water) caused positive effects on nutrition value of  Spinach leaves. Results also show that, the magnetized treatments (seeds and water; T4) under 2500 or 5000 ppm salinity level significantly improved all the above-mentioned parameters compared to untreated treatment (T1) at 15, 30, 45 and 55 days. Under the conditions of this experiment, the results suggest applying irrigation with magnetized water and seeds can be recommended for reducing salinity stress which reflected in improvement productivity of spinach crops.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ibrahim, M. A., Gomaa, F.A., Hozayen M, & Kotb, M. S. (2022). Magnetic Treatment Of Salted Irrigation Water And Seeds: Its Effects On Vegetable Crop Yield And Nutrition Value Of Spinach (Spinacia Oleracea L). Journal of Advanced Zoology, 43(S1), 229–243. https://doi.org/10.53555/jaz.v43iS1.3394
Section
Articles
Author Biographies

Ibrahim, M. A.

Soil Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.

Gomaa, F.A.

Soil Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.

Hozayen M

Field Crops Research Department, Agricultural and Biological Research Institute, National Research Centre, 33 El-Behouth St., (Former El Tahrir St.) 12622 Dokki, Giza, Egypt

Kotb, M. S.

Soil Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.

References

Raza, A. (2020). Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants. Plant Cell Rep. 41, 741–763. doi: 10.1007/S00299-020- 02635-8.

Fayed M.H., Sheta M.H., Mancy A.G. (2021). Improving the growth and productivity of faba bean (Vicia faba L.) under deficit irrigation conditions by spraying of potassium selenate and potassium silicate. Egyptian Journal of Soil Science, 61(1), 71-80. DOI: 10.21608/ejss.2021.54169.1417.

Selim DA-FH, Zayed M, Ali MME, Eldesouky HS, Bonfill M, El-Tahan AM, Ibrahim OM, El-Saadony MT, El-Tarabily KA, AbuQamar SF and Elokkiah S (2022) Germination, physio-anatomical behavior, and productivity of wheat plants irrigated with magnetically treated seawater. Front. Plant Sci. 13:923872. doi: 10.3389/fpls.2022.923872.

Kotb, T.H.S., Watanabe, T., Ogino, Y., Tanji, K.K., (2000) Soil salinization in the Nile Delta and related policy issues in Egypt. Agric. Water Manag 43, 239–261. https://doi. org/10.1016/S0378-3774(99)00052-9.

Mansour E, Moustafa ES, Abdul-Hamid MI, Ashshormillesy SM, Merwad ARM, Wafa HA, Igartua E (2021). Field responses of barley genotypes across a salinity gradient in an arid Mediterranean environment. Agric. Water Manag. 258: Article number 107206. https://doi.org/10.1016/j.agwat.2021.107206.

Allel, D.; Ben-Amar, A.; Abdelly, C. Leaf photosynthesis, chlorophyll fluorescence and ion content of barley (Hordeum vulgare) in response to salinity. J. Plant Nutr. 2018, 41, 497–508. https://doi.org/10.1080/01904167.2017.1385811.

Moustafa, E.S.A.; El-Sobky, E.-S.E.A.; Farag, H.I.A.; Yasin, M.A.T.; Attia, A.; Rady, M.O.A.; Awad, M.F.; Mansour, E. Sowing Date and Genotype Influence on Yield and Quality of Dual-Purpose Barley in a Salt-Affected Arid Region. Agronomy 2021, 11, 717. https://doi.org/ 10.3390/agronomy11040717

M.B. Rashid, K. Ahsan, A.B.K. Majlis, M.K. Ahsan, A. Mahmud, Sedimentation and coastal area management in the human-modified ganges-Brahmaputra tidal delta plain of Bangladesh, Int. J. River Basin Manag. (2022), https://doi.org/10.1080/ 15715124.2022.2092489.

Ali SG, Rab A, Khan NU, Nawab K (2011) Enhanced proline synthesis may determine resistance to salt stress in tomato cultivars. Pak J Bot 43:2707–2710.

Song, J., and Wang, B. (2015). Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model’, Annals of Botany, 115(3), 541- 553. doi: 10.1093/aob/mcu194.

Sandhu, D., Kaundal, A., Acharya, B.R. et al. Linking diverse salinity responses of 14 almond rootstocks with physiological, biochemical, and genetic determinants. Sci Rep 10, 21087 (2020). https://doi.org/10.1038/s41598-020-78036-4.

Chang KT, Weng CI (2008) An investigation into the structure of aqueous NaCl electrolyte solutions under magnetic fields. Comp Mater Sci 43: 1048–1055. https://doi.org/10.1016/j. commatsci.2008.02.020.

Pang XF, Deng B (2008) Investigation of changes in properties of water under the action of a magnetic field. Sc China Ser G 51: 1621–1632. https://doi.org/10.1007/s11433-008-0182-7.

Hozayn, M.M.; Salim, M.A.; Abd El-Monem, A.A.; El-Mahdy, A.A. Effect of magnetic brackish water treatments on morphology, anatomy and yield productivity of wheat (Triticum aestivum). Alex. Sci. Exch. J. 2019a, 40, 604–617. DOI: 10.21608/asejaiqjsae.2019.63578.

Mohrazi A, Ghasemi-Fasaei R, Ronaghi A, et al. (2021) Zinc behavior in maize cropping system as influenced by coal application and magnetized Zn contaminated water. J Plant Nutr 45: 583–593. https://doi.org/10.1080/01904167.2021.1936023.

Niaz N, Tang C, Zhang R, et al. (2021) Application of magnetic treated water irrigation increased soil salt leachate by altering water property. Eurasian Soil Sci 54: S26–S32. https://doi.org/10.1134/S1064229322030103.

Zolin Lorenzoni M, Rezende R, Seron CC, et al. (2021) Aplicación de agua tratada magnéticamente en el crecimiento inicial de las plantas de pimiento. Idesia (Arica) 39: 67–74. http://dx.doi.org/10.4067/S0718-34292021000200067.

Altalib AA, Ali WM, Al‐Ogaidi AAM, et al. (2022) Effects of magnetic field treatment of broad bean seeds and irrigation water on the growth and yield of plants. Irrig Drain https://doi.org/10.1002/ird.2729.

Pizetta SC, de Deus FP, de Oliveira Paiva PD, et al. (2022) Post-harvest growth and longevity of ornamental sunflowers irrigated using magnetised water with different irrigation depths. New Zeal J Crop Hort Sci 50: 1–18. https://doi.org/10.1080/01140671.2021.2019061.

Abobatta, W.F. Overview of role of magnetizing treated water in agricultural sector development. Adv. Agric. Technol. Plant Sci. 2019, 2, 180023.

Moosavi, F.; Gholizadeh, M. Magnetic effects on the solvent properties investigated by molecular dynamics simulation. J. Magn. Magn. Mater. 2014, 354, 239–247. https://doi.org/10.1016/j.jmmm.2013.11.012.

El-Zawily, A.E.S.; Meleha, M.; El-Sawy, M.; El-Attar, E.H.; Bayoumi, Y.; Alshaal, T. Application of magnetic field improves growth, yield and fruit quality of tomato irrigated alternatively by fresh and agricultural drainage water. Ecotoxicol. Environ. Saf. 2019, 181, 248–254. doi: 10.1016/j.ecoenv.2019.06.018.

Khoshravesh, M.; Mostafazadeh-Fard, B.; Mousavi, S.F.; Kiani, A.R.; Mostafazadeh-Fard, B.; Mousavi, S.F.; Kiani, A.R. Effects of magnetized water on the distribution pattern of soil water with respect to time in trickle irrigation. Soil Use Manag. 2011, 27, 515–522. https://doi.org/10.1111/j.1475-2743.2011.00358.x.

Fanous, N.E., Mohamed, A.A., and Shaban, K.A. (2017). Effect of magnetic treatment for irrigation ground water on soil salinity, nutrients, water productivity and yield fruit trees at sandy soil. Egypt. J. Soil Sci. 57 (1), 113-123. doi: 10.21608/EJSS.2017.1528.

Selim, D.A.-F.H.; Nassar, R.M.A.; Boghdady, M.S.; Bonfill, M. Physiological and anatomical studies of two wheat cultivars irrigated with magnetic water under drought stress conditions. Plant Physiol. Biochem. 2019, 135, 480–488. doi: 10.1016/j.plaphy.2018.11.012.

Mohamed, A.I., and Ebead, B.M. (2013). Effect of magnetic treated irrigation water on salt removal from a sandy soil and on the availability of certain nutrients. International J. Engineering and Applied Sciences. 2 (2), 36-44. Available at http://eaasjournal.org/survey/userfiles/files/agriculture%20engineering%204.pdf.

Amer, M.M., El Sanat, A.G., and Rashed, S.H. (2014). Effects of magnetized low quality irrigation water on some soil properties and soybean yield (Glycine Max L.) under salt affected soils conditions. J. Soil Sci. and Agric. Eng., Mansoura Univ. 5 (10), 1377 – 1388. doi: 10.21608/jssae.2014.49755.

Esmaeilnezhad, E.; Choi, H.J.; Schaffie, M.; Gholizadeh, M.; Ranjbar, M. Characteristics and applications of magnetized water as a green technology. J. Clean. Prod. 2017, 161, 908–921. DOI:10.1016/J.JCLEPRO.2017.05.166.

Simonič, M., and Urbancl, D. (2017). Alternating magnetic field influence on scaling in pump diffusers. J. Cleaner Production, 156, 445-450. doi: 10.1016/j.jclepro.2017.04.080.

Abd-Elrahman, S.H., Shalaby, O.A. (2017) Response of wheat plants to irrigation with magnetized water under Egyptian soil conditions. Egyptian Journal of Soil Science, 57(4), 477-488. DOI: 10.21608/EJSS.2017.1605.1122.

Hozayn M, Ahmed AA, El-Saady AA, Abd-Elmonem AA. 2019b. Enhancement in germination, seedling attributes and yields of alfalfa (Medicago sativa, L.) under salinity stress using static magnetic field treatments Eurasian journal of biosciences 13 (1), 369-378.

Hozayn, M.; M.F. El-Dahshouri; Azza, M. Salama; R.E. Abdelraouf and A.Z. Ahmed (2020a). Influence of magnetic brackish-water transactions on growth, anatomical structure, yield and characteristic of sugar beet (Beta vulgaris L.). Plant Arch., 20 (2): 8271-8278.

Hozayn M., Ramadan A. A., Elkady F. M. and Abd El-Monem A.A 2020b. Protective effects of magnetic water technology in alleviating salinity stress on growth, yield and biochemical changes of Barley (Hordeum vulgare, L.). Plant Cell Biotechnology and Molecular Biology 21(37&38):149-165; 2020. ISSN: 0972-2025.

Hozayn M, Azza S, Abd El-Monem AA and El-Mahdy AA 2021. Salinity stress mitigation of some canola cultivars grown under South Sini conditions using magnetic water technology. Afr. J. Food Agric. Nutr. Dev.; 21(1): 17234-17253 https://doi.org/10.18697/ajfand.96.19280.

Hozayn, M., Abd El-Monem, A. A, El-Mahdy, A. (2022). Alleviation salinity stress in germination, seedling vigor, growth, physiochemical, yield and nutritional value of Chickpea (Cicer arietinum L) using magnetic technology in sandy soil. Egyptian Journal of Chemistry, 65(132), 1317-1331. doi: 10.21608/ejchem.2022.160474.6910.

McDonald MB. 2000. Seed priming. In ‘‘Seed Technology and Its Biological Basis’’ (M. Black and J. D. Bewley, Eds.), pp. 287–325. Sheffield Academic Press, Sheffield, UK.

Abid M., Abdul Hakeem, Yuhang Shao, Yang Liu, Rizwan Zahoor, Yonghui Fan, Jiang Suyu, Syed Tahir Ata-Ul-Karim, Zhongwei Tian, Dong Jiang, John L. Snider, Tingbo Dai, Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.), Environmental and Experimental Botany, Volume 145, 2018, Pages 12-20, ISSN 0098-8472, https://doi.org/10.1016/j.envexpbot.2017.10.002.

Thejeshwini, B., A. Manohar Rao, M. Hanuman Nayak and Razia Sultana. 2019. Effect of Seed Priming on Plant Growth and Bulb Yield in Onion (Allium cepa L.). Int.J.Curr.Microbiol.App.Sci. 8(01): xx-xx. doi: https://doi.org/10.20546/ijcmas.2019.801.xx.

Hozayn M, EL-Mahdy AA, Zalama MT (2018) Magneto-priming for improving germination, seedling attributes and field performance of barley (Hordeum vulgare L.) under salinity stress. Middle East J. of Agric. Res., (7): 1006- 22.

Hozayn M, Ahmed AA (2019) Effect of Magneto-priming by tryptophan and ascorbic acid on germination attributes of barley (Hordeum vulgare, L.) under salinity stress. Eurasia J Biosci 13: 245-251.

Dutta, P. (2018). Seed Priming: New Vistas and Contemporary Perspectives. In: Rakshit, A., Singh, H. (eds) Advances in Seed Priming. Springer, Singapore. https://doi.org/10.1007/978-981-13-0032-5_1.

Feghhenabi, F. & Hadi, H. & Khodaverdiloo, Habib & Van Genuchten, Martinus. (2020). Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agricultural Water Management. 231. 106022. 10.1016/j.agwat.2020.106022.

Khalaki MA, Moameri M, Lajayer BA, Astatkie T (2020) Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regul:1–16. doi: 10.1007/s10725-020-00670-9.

Muchate, N.S., Rajurkar, N.S., Suprasanna, P. et al. NaCl induced salt adaptive changes and enhanced accumulation of 20-hydroxyecdysone in the in vitro shoot cultures of Spinacia oleracea (L.). Sci Rep 9, 12522 (2019). https://doi.org/10.1038/s41598-019-48737-6.

Gabr, S., Abouelsaad, I., Brengi, S., Gouda, A. (2022). Growth and Yield of Spinach As Affected by Silicon and Fulvic Acid Under Salt Stress. Journal of the Advances in Agricultural Researches, 27(1), 26-42. doi: 10.21608/jalexu.2022.114829.1037.

Zafar S, Perveen S, Kamran Khan M, Shaheen MR, Hussain R, Sarwar N, et al. (2022) Effect of zinc nanoparticles seed priming and foliar application on the growth and physio-biochemical indices of spinach (Spinacia oleracea L.) under salt stress. PLoS ONE 17(2): e0263194. https://doi.org/ 10.1371/journal.pone.0263194.

Ferreira, J.F.S.; J.B. da Silva, X.Liu, D. Sandhu . 2020. Spinach plants favor the absorption of K+ over Na+ regardless of salinity, and may benefit from Na+ when K+ is deficient in the soil. Plants, 9, 507. https://doi.org/10.3390/plants9040507.

Xu, C.; Mou, B. Responses of spinach to salinity and nutrient deficiency in growth, physiology, and nutritional Value. J. Am. Soc. Hortic. Sci. 2016, 141, 12-21. https://doi.org/10.21273/JASHS.141.1.12.

Ferreira, J.; Sandhu, D.; Liu, X.; Halvorson, J.J. Spinach (Spinacea oleracea L.) response to salinity: Nutritional value, physiological parameters, antioxidant capacity, and gene expression. Agriculture 2018, 8, 163. https://doi.org/10.3390/agriculture8100163.

Ibrahim, M.H.; Abas, N.A.; Zahra, S.M. Impact of Salinity Stress on Germination of Water Spinach (Ipomoea aquatica). Annu. Res. Rev. Biol. 2019, 31(5), 1–12, Doi:10.9734/arrb /2019/v31i530060.

Ors S. and D. L. Suarez, Spinach biomass yield and physiological response to interactive salinity and water stress, Agricultural Water Management, Volume 190, 2017, Pages 31-41, https://doi.org/10.1016/j.agwat.2017.05.003.

Parwada C., Chigiya V., Ngezimana W., Chipomho J., "Growth and Performance of Baby Spinach (Spinacia oleracea L.) Grown under Different Organic Fertilizers", International Journal of Agronomy, vol. 2020, Article ID 8843906, 6 pages, 2020.https://doi.org/10.1155/2020/8843906.

Salama, A.M., Abd El-Halim, AH.A., Ibrahim, M.M. et al. Amendment with Nanoparticulate Gypsum Enhances Spinach Growth in Saline-Sodic Soil. J Soil Sci Plant Nutr 22, 3377–3385 (2022). https://doi.org/10.1007/s42729-022-00893-x.

Page, A.L., Miller, R.H. and Keeney, D.R. (1982) Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy. In Soil Science Society of America, Vol. 1159.

Süß A, Danner M, Obster C, Locherer M, Hank T, Richter K. (2015) Measuring leaf chlorophyll content with the Konica Minolta SPAD-502Plus EnMAP field guides technical report. 2015. https://gfzpublic.gfz-potsdam.de/rest/items/item _1388302/ component/file_1388303/content.

Hoad, S. P., Grace, J., & Jeffree, C. E. (1996). A leaf disc method for measuring cuticular conductance. Journal of Experimental Botany, 47(296), 431–437. http://www.jstor.org/stable/23695291

Simane, B., J.M. Peacock and P.C. Struik, 1993. Differences in developmental plasticity and growth rate among drought-resistant and susceptible cultivars of durum wheat (Triticum turgidum L. var. durum). Plant Soil, 157: 155-166.

Chapman, H.O., & Pratt, P.E., (1978). Methods of Analysis for Soils, Plants and Water. Univ. of California Agric. Sci. Priced Publication, 4034. pp: 50.

Konica, M.O., 2012. Chlorophyll Meter SPAD-502 Plus - A lightweight handheld meter for measuring the chlorophyll content of leaves without causing damage to plants.URL:http://www.konicaminolta.com/instruments/download/catalog/color/pdf/spad502plus_e1.pdf (as of: Apr/13).

Freed R., S.P. Einensmith, S. Gutez, D. Reicosky, V.W. Smail and P. Wolberg (1989). Guide to MSTAT-C Analysis of Agronomic Research Experiments. Michigan State University, East Lansing, U.S.A.

Shahin, M. M., A. M. A. Mashhour and E. S. E. Abd-Elhady (2016). Effect of magnetized irrigation water and seeds on some water properties, growth parameter and yield productivity of cucumber plants. Curr. Sci. Int., 5(2):152-164.

Jasim, A. H., Al-taee, Y. I., Atab, H. A., and Abdulhusain, M. A. (2017). Effect of saline water magnetization on growth and development of wheat and rice seedlings. Euphrates J. Agri. Sci. 9, 1–12.

Alpsoy HC, Unal H (2019) Efect of stationary magnetic feld on seed germination and crop yield in spinach (Spinacia oleracea L.). Comptes Rendus L’Academie Bulg des Sci 72:687–696. https:// doi.org/10.7546/CRABS.2019.05.18.

Kataria, S.; Anand, A.; Raipuria, R.K.; Kumar, S.; Jain, M.; Watts, A.; Brestic, M. Magnetopriming Actuates Nitric Oxide Synthesis to Regulate Phytohormones for Improving Germination of Soybean Seeds under Salt Stress. Cells 2022, 11, 2174. https://doi.org/10.3390/cells11142174.

Elhindi K. M., Al-Mana F. A., Algahtani A. M., Alotaibi M. A., 2020 Effect of irrigation with saline magnetized water and different soil amendments on growth and flower production of Calendula officinalis L. plants, Saudi Journal of Biological Sciences,Volume 27, Issue 11, ,Pages 3072-3078, https://doi.org/10.1016/j.sjbs.2020.09.015.

Nofal, E.M.S.; Khalafallah, M.M.; Shahin, S.M.; Montasser, H.M.M.S. Usage of magnetic iron to raise tolerance of some ornamental trees and shrubs to soil salinity in case of horseradish tree (Moringa oleifera Lam.). Appl. Ecol. Environ. Res. 2021, 19, 1177–1190. DOI:10.15666/aeer/1902_11911202.

Alattar E., Radwan E., Elwasife K. Improvement in growth of plants under the effect of magnetized water [J]. AIMS Biophysics, 2022, 9(4): 346-387. doi: 10.3934/biophy.2022029

Rathod, G.R., Anand, A. Effect of seed magneto-priming on growth, yield and Na/K ratio in wheat (Triticum aestivum L.) under salt stress. Ind J Plant Physiol. 21, 15–22 (2016). https://doi.org/10.1007/s40502-015-0189-9.

Kataria S., Baghel L., Guruprasad K. N. 2017. Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean, Biocatalysis and Agricultural Biotechnology, 10, 83-90, https://doi.org/10.1016/j.bcab.2017.02.010.

Kataria S., Baghel L., Jain M., Guruprasad K.N. 2019. Magnetopriming regulates antioxidant defense system in soybean against salt stress, Biocatalysis and Agricultural Biotechnology, 18, 101090, https://doi.org/10.1016/j.bcab.2019.101090.

Abhary, M.K. and Akhkha, A. (2023), Effects of neodymium magneto-priming on seed germination and salinity tolerance in tomato. Bioelectromagnetics. https://doi.org/10.1002/bem.22438