Oncolytic Viral Nanoparticles: A Combination Of Targeted And Immunotherapeutic Approach For Cancer Treatment: A Review

Main Article Content

Puja Sadhu
Suranjana Sarkar
Aritri Laha
Semanti Ghosh
Bidisha Ghosh
Subhasis Sarkar

Abstract

Human health and survival have always been seriously threatened by cancer. Although surgery, radiation therapy, and chemotherapy could improve the  survival rate of cancer patients, most patients with chronic cancer have a poor survival rate or cannot afford the high cost of treatment. The development of oncolytic viruses provides us with a new technique for treating or even curing malignant cancers. Oncolytic viruses (OVs) have gained interest as a potential approach in cancer therapy because of their potential to selectively infect and destroy tumor cells, without affecting healthy cells . They also work against cancer by releasing immunostimulatory chemicals from dead cancer cells. Oncolytic virotherapy, like other anticancer therapies, has various limitations, including viral transport to the target, tumor mass penetration, and antiviral immune responses. Nanoparticles (NPs) have gained a lot of interest in clinical studies because of their distinctive appearance characteristics. However they have encountered challenges due to the inefficiency of drug delivery to the tissue of interest and their dispersion in bloodstream. In this scenario, various chemical alterations can be employed to the nanoparticle surfaces to boost their efficacy in drug delivery. To improve the functioning of these two therapeutic methods, the sophisticated technique of OVs encapsulated with nanoparticles can be employed, which has shown significant therapeutic outcomes in the treatment of various malignancies. This review focuses on the clinical advancements of oncolytic viruses and nanoparticles in cancer therapy and their combinational effects on tumor cells. This review also provides insight into the future prospects by assessing both the advantages and disadvantages of nano-based oncolytic virotherapy.

Downloads

Download data is not yet available.

Article Details

How to Cite
Puja Sadhu, Suranjana Sarkar, Aritri Laha, Semanti Ghosh, Bidisha Ghosh, & Subhasis Sarkar. (2023). Oncolytic Viral Nanoparticles: A Combination Of Targeted And Immunotherapeutic Approach For Cancer Treatment: A Review. Journal of Advanced Zoology, 44(S5), 2537–2550. https://doi.org/10.53555/jaz.v44iS5.3277
Section
Articles
Author Biographies

Puja Sadhu

Department of Microbiology, School of Life Sciences, Swami Vivekananda University, Barrakpore, Kolkata- 700121

Suranjana Sarkar

Department of Microbiology, School of Life Sciences, Swami Vivekananda University, Barrakpore, Kolkata- 700121

Aritri Laha

Department of Microbiology, School of Life Sciences, Swami Vivekananda University, Barrakpore, Kolkata- 700121

Semanti Ghosh

Department of Biotechnology, School of Life Sciences, Swami Vivekananda University, Barrakpore, Kolkata- 700121

Bidisha Ghosh

Department of Biotechnology, School of Life Sciences, Swami Vivekananda University, Barrakpore, Kolkata- 700121

Subhasis Sarkar

Department of Microbiology, School of Life Sciences, Swami Vivekananda University, Barrakpore, Kolkata- 700121

References

Abd-Aziz, N., & Poh, C. L. (2021). Development of oncolytic viruses for cancer therapy. In Translational Research (Vol. 237, pp. 98–123). Mosby Inc. https://doi.org/10.1016/j.trsl.2021.04.008

Achard, C., Surendran, A., Wedge, M.-E., Ungerechts, G., Bell, J., & Ilkow, C. S. (2018). Lighting a Fire in the Tumor Microenvironment Using Oncolytic Immunotherapy. EBioMedicine, 31, 17–24. https://doi.org/10.1016/j.ebiom.2018.04.020

Adepu, S., & Ramakrishna, S. (2021). Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules (Basel, Switzerland), 26(19). https://doi.org/10.3390/molecules26195905

Agabeigi, R., Rasta, S. H., Rahmati-Yamchi, M., Salehi, R., & Alizadeh, E. (2020). Novel Chemo-Photothermal Therapy in Breast Cancer Using Methotrexate-Loaded Folic Acid Conjugated Au@SiO2 Nanoparticles. Nanoscale Research Letters, 15(1), 62. https://doi.org/10.1186/s11671-020-3295-1

Ahmed, S., Rehman, S. U., & Tabish, M. (2022). Cancer nanomedicine: A step towards improving the drug delivery and enhanced efficacy of chemotherapeutic drugs. In OpenNano (Vol. 7). Elsevier Inc. https://doi.org/10.1016/j.onano.2022.100051

Ajam-Hosseini, M., Akhoondi, F., & Doroudian, M. (2023). Nano based-oncolytic viruses for cancer therapy. In Critical Reviews in Oncology/Hematology (Vol. 185). Elsevier Ireland Ltd. https://doi.org/10.1016/j.critrevonc.2023.103980

Alemany, R. (2013). Viruses in cancer treatment. Clinical and Translational Oncology, 15(3), 182–188. https://doi.org/10.1007/s12094-012-0951-7

Andtbacka, R. H. I., Kaufman, H. L., Collichio, F., Amatruda, T., Senzer, N., Chesney, J., Delman, K. A., Spitler, L. E., Puzanov, I., Agarwala, S. S., Milhem, M., Cranmer, L., Curti, B., Lewis, K., Ross, M., Guthrie, T., Linette, G. P., Daniels, G. A., Harrington, K., … Coffin, R. S. (2015). Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 33(25), 2780–2788. https://doi.org/10.1200/JCO.2014.58.3377

Aoyama, K., Kuroda, S., Morihiro, T., Kanaya, N., Kubota, T., Kakiuchi, Y., Kikuchi, S., Nishizaki, M., Kagawa, S., Tazawa, H., & Fujiwara, T. (2017). Liposome-encapsulated plasmid DNA of telomerase-specific oncolytic adenovirus with stealth effect on the immune system. Scientific Reports, 7(1), 14177. https://doi.org/10.1038/s41598-017-14717-x

Arabi, F., Mansouri, V., & Ahmadbeigi, N. (2022). Gene therapy clinical trials, where do we go? An overview. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 153, 113324. https://doi.org/10.1016/j.biopha.2022.113324

Bai, Y., Hui, P., Du, X., & Su, X. (2019). Updates to the antitumor mechanism of oncolytic virus. Thoracic Cancer, 10(5), 1031–1035. https://doi.org/10.1111/1759-7714.13043

Breitbach, C. J., Arulanandam, R., Silva, N. D., Thorne, S. H., Patt, R., Daneshmand, M., Moon, A., Ilkow, C., Burke, J., Hwang, T.-H., Heo, J., Cho, M., Chen, H., Angarita, F. A., Addison, C., McCart, J. A., Bell, J. C., & Kirn, D. H. (2013). Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Research, 73(4), 1265–1275. https://doi.org/10.1158/0008-5472.CAN-12-2687

Breitbach, C. J., Paterson, J. M., Lemay, C. G., Falls, T. J., McGuire, A., Parato, K. A., Stojdl, D. F., Daneshmand, M., Speth, K., Kirn, D., McCart, J. A., Atkins, H., & Bell, J. C. (2007). Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Molecular Therapy : The Journal of the American Society of Gene Therapy, 15(9), 1686–1693. https://doi.org/10.1038/sj.mt.6300215

Burman, B., Pesci, G., & Zamarin, D. (2020). Newcastle disease virus at the forefront of cancer immunotherapy. In Cancers (Vol. 12, Issue 12, pp. 1–15). MDPI AG. https://doi.org/10.3390/cancers12123552

Cao, G. D., He, X. B., Sun, Q., Chen, S., Wan, K., Xu, X., Feng, X., Li, P. P., Chen, B., & Xiong, M. M. (2020). The Oncolytic Virus in Cancer Diagnosis and Treatment. In Frontiers in Oncology (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fonc.2020.01786

Chaudhuri, A., Ramesh, K., Kumar, D. N., Dehari, D., Singh, S., Kumar, D., & Agrawal, A. K. (2022). Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. Journal of Drug Delivery Science and Technology, 77, 103886. https://doi.org/10.1016/j.jddst.2022.103886

Chen, N. G., Szalay, A. A., Buller, R. M. L., & Lauer, U. M. (2012). Oncolytic Viruses. Advances in Virology, 2012, 1–2. https://doi.org/10.1155/2012/320206

Chung, Y. H., Cai, H., & Steinmetz, N. F. (2020). Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. In Advanced Drug Delivery Reviews (Vol. 156, pp. 214–235). Elsevier B.V. https://doi.org/10.1016/j.addr.2020.06.024

Coffin, R. (2016). Interview with Robert Coffin, inventor of T-VEC: the first oncolytic immunotherapy approved for the treatment of cancer. Immunotherapy, 8(2), 103–106. https://doi.org/10.2217/imt.15.116

Connolly, J. L., Rodgers, S. E., Clarke, P., Ballard, D. W., Kerr, L. D., Tyler, K. L., & Dermody, T. S. (2000). Reovirus-induced apoptosis requires activation of transcription factor NF-kappaB. Journal of Virology, 74(7), 2981–2989. https://doi.org/10.1128/jvi.74.7.2981-2989.2000

Deng, Y., Zhang, X., Shen, H., He, Q., Wu, Z., Liao, W., & Yuan, M. (2019). Application of the Nano-Drug Delivery System in Treatment of Cardiovascular Diseases. Frontiers in Bioengineering and Biotechnology, 7, 489. https://doi.org/10.3389/fbioe.2019.00489

Dolgin, E. (2015). Oncolytic viruses get a boost with first FDA-approval recommendation. Nature Reviews. Drug Discovery, 14(6), 369–371. https://doi.org/10.1038/nrd4643

Doroudian, M., Armstrong, M. E., & Donnelly, S. C. (2023). Nano-Based Therapies for Acute and Chronic Lung Diseases (pp. 271–286). https://doi.org/10.1007/978-981-19-8342-9_12

Doroudian, M., Azhdari, M. H., Goodarzi, N., O’Sullivan, D., & Donnelly, S. C. (2021). Smart Nanotherapeutics and Lung Cancer. Pharmaceutics, 13(11). https://doi.org/10.3390/pharmaceutics13111972

Doroudian, M., Neill, A. O., Loughlin, R. M., Prina-Mello, A., Volkov, Y., & Donnelly, S. C. (2021). Nanotechnology in pulmonary medicine. Current Opinion in Pharmacology, 56, 85–92. https://doi.org/10.1016/j.coph.2020.11.002

Elankumaran, S., Rockemann, D., & Samal, S. K. (2006). Newcastle disease virus exerts oncolysis by both intrinsic and extrinsic caspase-dependent pathways of cell death. Journal of Virology, 80(15), 7522–7534. https://doi.org/10.1128/JVI.00241-06

Errington, F., Steele, L., Prestwich, R., Harrington, K. J., Pandha, H. S., Vidal, L., Bono, J. de, Selby, P., Coffey, M., Vile, R., & Melcher, A. (2008). Reovirus activates human dendritic cells to promote innate antitumor immunity. Journal of Immunology (Baltimore, Md. : 1950), 180(9), 6018–6026. https://doi.org/10.4049/jimmunol.180.9.6018

Farjadian, F., Ghasemi, S., Akbarian, M., Hoseini-Ghahfarokhi, M., Moghoofei, M., & Doroudian, M. (2022). Physically stimulus-responsive nanoparticles for therapy and diagnosis. Frontiers in Chemistry, 10, 952675. https://doi.org/10.3389/fchem.2022.952675

Garber, K. (2006). China approves world’s first oncolytic virus therapy for cancer treatment. Journal of the National Cancer Institute, 98(5), 298–300. https://doi.org/10.1093/jnci/djj111

Ghasemiyeh, P., Mohammadi-Samani, S., Noorizadeh, K., Zadmehr, O., Rasekh, S., Mohammadi-Samani, S., & Dehghan, D. (2022). Novel topical drug delivery systems in acne management: Molecular mechanisms and role of targeted delivery systems for better therapeutic outcomes. Journal of Drug Delivery Science and Technology, 74, 103595. https://doi.org/10.1016/j.jddst.2022.103595

Goldufsky, J., Sivendran, S., Harcharik, S., Pan, M., Bernardo, S., Stern, R. H., Friedlander, P., Ruby, C. E., Saenger, Y., & Kaufman, H. L. (2013). Oncolytic virus therapy for cancer. Oncolytic Virotherapy, 2, 31–46. https://doi.org/10.2147/OV.S38901

Gonzalez-Pastor, R., Hernandez, Y., Gimeno, M., Martino, A. de, Man, Y. K. S., Hallden, G., Quintanilla, M., Fuente, J. M. de la, & Martin-Duque, P. (2021). Coating an adenovirus with functionalized gold nanoparticles favors uptake, intracellular trafficking and anti-cancer therapeutic efficacy. Acta Biomaterialia, 134, 593–604. https://doi.org/10.1016/j.actbio.2021.07.047

Grapa, C. M., Mocan, T., Gonciar, D., Zdrehus, C., Mosteanu, O., Pop, T., & Mocan, L. (2019). Epidermal Growth Factor Receptor and Its Role in Pancreatic Cancer Treatment Mediated by Nanoparticles. International Journal of Nanomedicine, 14, 9693–9706. https://doi.org/10.2147/IJN.S226628

Gruijl, T. D. de, Janssen, A. B., & Beusechem, V. W. van. (2015). Arming oncolytic viruses to leverage antitumor immunity. Expert Opinion on Biological Therapy, 15(7), 959–971. https://doi.org/10.1517/14712598.2015.1044433

Guerrini, L., Alvarez-Puebla, R. A., & Pazos-Perez, N. (2018). Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials (Basel, Switzerland), 11(7). https://doi.org/10.3390/ma11071154

Guo, Z. S., & Bartlett, D. L. (2004). Vaccinia as a vector for gene delivery. Expert Opinion on Biological Therapy, 4(6), 901–917. https://doi.org/10.1517/14712598.4.6.901

Guo, Z., Sui, J., Ma, M., Hu, J., Sun, Y., Yang, L., Fan, Y., & Zhang, X. (2020). pH-Responsive charge switchable PEGylated ε-poly-l-lysine polymeric nanoparticles-assisted combination therapy for improving breast cancer treatment. Journal of Controlled Release : Official Journal of the Controlled Release Society, 326, 350–364. https://doi.org/10.1016/j.jconrel.2020.07.030

Haddad, D. (2017). Genetically Engineered Vaccinia Viruses As Agents for Cancer Treatment, Imaging, and Transgene Delivery. Frontiers in Oncology, 7, 96. https://doi.org/10.3389/fonc.2017.00096

Hajipour, H., Ghorbani, M., Kahroba, H., Mahmoodzadeh, F., Emameh, R. Z., & Taheri, R. A. (2019). Arginyl-glycyl-aspartic acid (RGD) containing nanostructured lipid carrier co-loaded with doxorubicin and sildenafil citrate enhanced anti-cancer effects and overcomes drug resistance. Process Biochemistry, 84, 172–179. https://doi.org/10.1016/j.procbio.2019.06.013

Heise, C., Sampson-Johannes, A., Williams, A., McCormick, F., Hoff, D. D. V., & Kirn, D. H. (1997). ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Medicine, 3(6), 639–645. https://doi.org/10.1038/nm0697-639

Howard, F., & Muthana, M. (2020). Designer nanocarriers for navigating the systemic delivery of oncolytic viruses. Nanomedicine (London, England), 15(1), 93–110. https://doi.org/10.2217/nnm-2019-0323

Hsu, J.-F., Chu, S.-M., Liao, C.-C., Wang, C.-J., Wang, Y.-S., Lai, M.-Y., Wang, H.-C., Huang, H.-R., & Tsai, M.-H. (2021). Nanotechnology and Nanocarrier-Based Drug Delivery as the Potential Therapeutic Strategy for Glioblastoma Multiforme: An Update. Cancers, 13(2). https://doi.org/10.3390/cancers13020195

Iwai, Y., Hamanishi, J., Chamoto, K., & Honjo, T. (2017). Cancer immunotherapies targeting the PD-1 signaling pathway. Journal of Biomedical Science, 24(1), 26. https://doi.org/10.1186/s12929-017-0329-9

Ji, Q., Wu, Y., Albers, A., Fang, M., & Qian, X. (2022). Strategies for Advanced Oncolytic Virotherapy: Current Technology Innovations and Clinical Approaches. Pharmaceutics, 14(9). https://doi.org/10.3390/pharmaceutics14091811

Jiang, H., & Fueyo, J. (2014). Healing after death: Antitumor immunity induced by oncolytic adenoviral therapy. Oncoimmunology, 3(7), e947872. https://doi.org/10.4161/21624011.2014.947872

Jong, W. H. D., & Borm, P. J. A. (2008). Drug delivery and nanoparticles:applications and hazards. International Journal of Nanomedicine, 3(2), 133–149. https://doi.org/10.2147/ijn.s596

Kaufman, H. L., Kohlhapp, F. J., & Zloza, A. (2015). Oncolytic viruses: A new class of immunotherapy drugs. Nature Reviews. Drug Discovery, 14(9), 642–662. https://doi.org/10.1038/nrd4663

Khairnar, S. V., Pagare, P., Thakre, A., Nambiar, A. R., Junnuthula, V., Abraham, M. C., Kolimi, P., Nyavanandi, D., & Dyawanapelly, S. (2022). Review on the Scale-Up Methods for the Preparation of Solid Lipid Nanoparticles. Pharmaceutics, 14(9). https://doi.org/10.3390/pharmaceutics14091886

Kim, J. H., Oh, J. Y., Park, B. H., Lee, D. E., Kim, J. S., Park, H. E., Roh, M. S., Je, J. E., Yoon, J. H., Thorne, S. H., Kirn, D., & Hwang, T. H. (2006). Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Molecular Therapy : The Journal of the American Society of Gene Therapy, 14(3), 361–370. https://doi.org/10.1016/j.ymthe.2006.05.008

Kim, J., Nam, H. Y., Choi, J. W., Yun, C.-O., & Kim, S. W. (2014). Efficient lung orthotopic tumor-growth suppression of oncolytic adenovirus complexed with RGD-targeted bioreducible polymer. Gene Therapy, 21(5), 476–483. https://doi.org/10.1038/gt.2014.18

Lee, M.-K. (2020). Liposomes for Enhanced Bioavailability of Water-Insoluble Drugs: In Vivo Evidence and Recent Approaches. Pharmaceutics, 12(3). https://doi.org/10.3390/pharmaceutics12030264

Lichty, B. D., Breitbach, C. J., Stojdl, D. F., & Bell, J. C. (2014). Going viral with cancer immunotherapy. Nature Reviews. Cancer, 14(8), 559–567. https://doi.org/10.1038/nrc3770

Maroun, J., Muñoz-Alía, M., Ammayappan, A., Schulze, A., Peng, K.-W., & Russell, S. (2017). Designing and building oncolytic viruses. Future Virology, 12(4), 193–213. https://doi.org/10.2217/fvl-2016-0129

Matos, A. L. de, Franco, L. S., & McFadden, G. (2020). Oncolytic Viruses and the Immune System: The Dynamic Duo. In Molecular Therapy—Methods and Clinical Development (Vol. 17, pp. 349–358). Cell Press. https://doi.org/10.1016/j.omtm.2020.01.001

McCarthy, C., Jayawardena, N., Burga, L. N., & Bostina, M. (2019). Developing Picornaviruses for Cancer Therapy. Cancers, 11(5). https://doi.org/10.3390/cancers11050685

Mejía-Méndez, J. L., Vazquez-Duhalt, R., Hernández, L. R., Sánchez-Arreola, E., & Bach, H. (2022). Virus-like Particles: Fundamentals and Biomedical Applications. International Journal of Molecular Sciences, 23(15), 8579. https://doi.org/10.3390/ijms23158579

Milewska, S., Niemirowicz-Laskowska, K., Siemiaszko, G., Nowicki, P., Wilczewska, A. Z., & Car, H. (2021). Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. International Journal of Nanomedicine, 16, 6593–6644. https://doi.org/10.2147/IJN.S323831

Misra, S. (2013). Human gene therapy: A brief overview of the genetic revolution. The Journal of the Association of Physicians of India, 61(2), 127–133.

Mondal, M., Guo, J., He, P., & Zhou, D. (2020). Recent advances of oncolytic virus in cancer therapy. In Human Vaccines and Immunotherapeutics (Vol. 16, Issue 10, pp. 2389–2402). Bellwether Publishing, Ltd. https://doi.org/10.1080/21645515.2020.1723363

Niemann, J., & Kühnel, F. (2017). Oncolytic viruses: Adenoviruses. Virus Genes, 53(5), 700–706. https://doi.org/10.1007/s11262-017-1488-1

Patnaik, S., & Gupta, K. C. (2013). Novel polyethylenimine-derived nanoparticles for in vivo gene delivery. Expert Opinion on Drug Delivery, 10(2), 215–228. https://doi.org/10.1517/17425247.2013.744964

PELNER, L., FOWLER, G. A., & NAUTS, H. C. (1958). Effects of concurrent infections and their toxins on the course of leukemia. Acta Medica Scandinavica. Supplementum, 338, 1–47.

Pham, D. T., Chokamonsirikun, A., Phattaravorakarn, V., & Tiyaboonchai, W. (2021). Polymeric micelles for pulmonary drug delivery: A comprehensive review. Journal of Materials Science, 56(3), 2016–2036. https://doi.org/10.1007/s10853-020-05361-4

Pierce, K. M., Miklavcic, W. R., Cook, K. P., Hennen, M. S., Bayles, K. W., Hollingsworth, M. A., Brooks, A. E., Pullan, J. E., & Dailey, K. M. (2021). The evolution and future of targeted cancer therapy: From nanoparticles, oncolytic viruses, and oncolytic bacteria to the treatment of solid tumors. In Nanomaterials (Vol. 11, Issue 11). MDPI. https://doi.org/10.3390/nano11113018

Prestwich, R. J., Errington, F., Diaz, R. M., Pandha, H. S., Harrington, K. J., Melcher, A. A., & Vile, R. G. (2009). The case of oncolytic viruses versus the immune system: Waiting on the judgment of Solomon. Human Gene Therapy, 20(10), 1119–1132. https://doi.org/10.1089/hum.2009.135

Puré, E., & Lo, A. (2016). Can Targeting Stroma Pave the Way to Enhanced Antitumor Immunity and Immunotherapy of Solid Tumors? Cancer Immunology Research, 4(4), 269–278. https://doi.org/10.1158/2326-6066.CIR-16-0011

Rabinovich, G. A., Gabrilovich, D., & Sotomayor, E. M. (2007). Immunosuppressive strategies that are mediated by tumor cells. Annual Review of Immunology, 25, 267–296. https://doi.org/10.1146/annurev.immunol.25.022106.141609

Rahman, M. M., & McFadden, G. (2021). Oncolytic viruses: Newest frontier for cancer immunotherapy. In Cancers (Vol. 13, Issue 21). MDPI. https://doi.org/10.3390/cancers13215452

Rao, J. P., & Geckeler, K. E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science, 36(7), 887–913. https://doi.org/10.1016/j.progpolymsci.2011.01.001

Russell, S. J., & Peng, K.-W. (2007). Viruses as anticancer drugs. Trends in Pharmacological Sciences, 28(7), 326–333. https://doi.org/10.1016/j.tips.2007.05.005

Russell, S. J., Peng, K.-W., & Bell, J. C. (2012). Oncolytic virotherapy. Nature Biotechnology, 30(7), 658–670. https://doi.org/10.1038/nbt.2287

Schietinger, A., Philip, M., Liu, R. B., Schreiber, K., & Schreiber, H. (2010). Bystander killing of cancer requires the cooperation of CD4(+) and CD8(+) T cells during the effector phase. The Journal of Experimental Medicine, 207(11), 2469–2477. https://doi.org/10.1084/jem.20092450

Sendra, L., Miguel, A., Navarro-Plaza, M. C., Herrero, M. J., Higuera, J. de la, Cháfer-Pericás, C., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Rojas, L. A., Alemany, R., & Aliño, S. F. (2020). Gold Nanoparticle-Assisted Virus Formation by Means of the Delivery of an Oncolytic Adenovirus Genome. Nanomaterials (Basel, Switzerland), 10(6). https://doi.org/10.3390/nano10061183

Seymour, L. W., & Fisher, K. D. (2016). Oncolytic viruses: Finally delivering. British Journal of Cancer, 114(4), 357–361. https://doi.org/10.1038/bjc.2015.481

Sibuyi, N. R. S., Moabelo, K. L., Fadaka, A. O., Meyer, S., Onani, M. O., Madiehe, A. M., & Meyer, M. (2021). Multifunctional Gold Nanoparticles for Improved Diagnostic and Therapeutic Applications: A Review. Nanoscale Research Letters, 16(1), 174. https://doi.org/10.1186/s11671-021-03632-w

Singh, P., Pandit, S., Mokkapati, V. R. S. S., Garg, A., Ravikumar, V., & Mijakovic, I. (2018). Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer. International Journal of Molecular Sciences, 19(7). https://doi.org/10.3390/ijms19071979

Sinha, N., & Yeow, J. T. W. (2005). Carbon nanotubes for biomedical applications. IEEE Transactions on Nanobioscience, 4(2), 180–195. https://doi.org/10.1109/tnb.2005.850478

Souri, M., Soltani, M., Kashkooli, F. M., Shahvandi, M. K., Chiani, M., Shariati, F. S., Mehrabi, M. R., & Munn, L. L. (2022). Towards principled design of cancer nanomedicine to accelerate clinical translation. Materials Today. Bio, 13, 100208. https://doi.org/10.1016/j.mtbio.2022.100208

Staehlke, S., Lehnfeld, J., Schneider, A., Nebe, J. B., & Müller, R. (2019). Terminal chemical functions of polyamidoamine dendrimer surfaces and its impact on bone cell growth. Materials Science & Engineering. C, Materials for Biological Applications, 101, 190–203. https://doi.org/10.1016/j.msec.2019.03.073

Thorne, S. H. (2011). Immunotherapeutic potential of oncolytic vaccinia virus. Immunologic Research, 50(2–3), 286–293. https://doi.org/10.1007/s12026-011-8211-4

Tseng, S.-H., Chou, M.-Y., & Chu, I.-M. (2015). Cetuximab-conjugated iron oxide nanoparticles for cancer imaging and therapy. International Journal of Nanomedicine, 10, 3663–3685. https://doi.org/10.2147/IJN.S80134

Tseng, S.-J., Huang, K.-Y., Kempson, I. M., Kao, S.-H., Liu, M.-C., Yang, S.-C., Liao, Z.-X., & Yang, P.-C. (2016). Remote Control of Light-Triggered Virotherapy. ACS Nano, 10(11), 10339–10346. https://doi.org/10.1021/acsnano.6b06051

Wilczewska, A. Z., Niemirowicz, K., Markiewicz, K. H., & Car, H. (2012). Nanoparticles as drug delivery systems. Pharmacological Reports : PR, 64(5), 1020–1037. https://doi.org/10.1016/s1734-1140(12)70901-5

Xia, Z.-J., Chang, J.-H., Zhang, L., Jiang, W.-Q., Guan, Z.-Z., Liu, J.-W., Zhang, Y., Hu, X.-H., Wu, G.-H., Wang, H.-Q., Chen, Z.-C., Chen, J.-C., Zhou, Q.-H., Lu, J.-W., Fan, Q.-X., Huang, J.-J., & Zheng, X. (2004). [Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus]. Ai Zheng = Aizheng = Chinese Journal of Cancer, 23(12), 1666–1670.

Yokoda, R., Nagalo, B. M., Vernon, B., Oklu, R., Albadawi, H., DeLeon, T. T., Zhou, Y., Egan, J. B., Duda, D. G., & Borad, M. J. (2017). Oncolytic virus delivery: From nano-pharmacodynamics to enhanced oncolytic effect. Oncolytic Virotherapy, 6, 39–49. https://doi.org/10.2147/OV.S145262

Younis, N. K., Roumieh, R., Bassil, E. P., Ghoubaira, J. A., Kobeissy, F., & Eid, A. H. (2022). Nanoparticles: Attractive tools to treat colorectal cancer. Seminars in Cancer Biology, 86(Pt 2), 1–13. https://doi.org/10.1016/j.semcancer.2022.08.006

Zare-Zardini, H., Hatamizadeh, N., Haddadzadegan, N., Soltaninejad, H., & Karimi-Zarchi, M. (2022). Advantages and disadvantages of using Carbon Nanostructures in Reproductive Medicine: Two sides of the same coin. JBRA Assisted Reproduction, 26(1), 142–144. https://doi.org/10.5935/1518-0557.20210070

Zheng, Y., Wang, Y., Xia, M., Gao, Y., Zhang, L., Song, Y., & Zhang, C. (2022). The combination of nanotechnology and traditional Chinese medicine (TCM) inspires the modernization of TCM: review on nanotechnology in TCM-based drug delivery systems. Drug Delivery and Translational Research, 12(6), 1306–1325. https://doi.org/10.1007/s13346-021-01029-x

Zhu, J., Chen, W., Sun, Y., Huang, X., Chu, R., Wang, R., Zhou, D., & Ye, S. (2022). Recent advances on drug delivery nanoplatforms for the treatment of autoimmune inflammatory diseases. Materials Advances, 3(21), 7687–7708. https://doi.org/10.1039/D2MA00814A

Zugazagoitia, J., Guedes, C., Ponce, S., Ferrer, I., Molina-Pinelo, S., & Paz-Ares, L. (2016). Current Challenges in Cancer Treatment. Clinical Therapeutics, 38(7), 1551–1566. https://doi.org/10.1016/j.clinthera.2016.03.026

Most read articles by the same author(s)

1 2 3 4 > >>