Development And Formulation Of Drug Loaded Hydrogel For Bone Regenerative Potential

Main Article Content

S Aravind
Dr. T. S. Shanmugarajan

Abstract

Bone defects resulting from trauma, disease, or congenital abnormalities represent a significant clinical challenge, necessitating advanced regenerative therapies. This study presents the development and formulation of a drug-loaded hydrogel as a novel approach for bone regeneration. The hydrogel matrix is engineered to provide structural support and controlled release of therapeutic agents to enhance bone healing. Various biocompatible polymers and crosslinking strategies are investigated to optimize the hydrogel's mechanical properties, degradation kinetics, and drug release profiles. Furthermore, the study explores the efficacy of different drugs, growth factors, and osteoinductive molecules in promoting osteogenesis and bone tissue regeneration within the hydrogel scaffold. The developed drug-loaded hydrogel holds promise as a versatile platform for addressing diverse bone defects and advancing the field of regenerative orthopedics.


 

Downloads

Download data is not yet available.

Article Details

How to Cite
S Aravind, & Dr. T. S. Shanmugarajan. (2024). Development And Formulation Of Drug Loaded Hydrogel For Bone Regenerative Potential. Journal of Advanced Zoology, 45(5), 93–101. https://doi.org/10.53555/jaz.v45i5.4693
Section
Articles
Author Biographies

S Aravind

Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology, And Advanced Studies (VISTAS). Pallavaram-600117, Chennai, Tamil Nadu, India

Dr. T. S. Shanmugarajan

Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology, And Advanced Studies (VISTAS). Pallavaram-600117, Chennai, Tamil Nadu, India

References

A.Schindeler, M.M. McDonald, P. Bokko, D.G. Little, Bone remodeling during fracture repair: The cellular picture, in: Seminars in Cell & Developmental Biology, Elsevier, 2008.

Z.-Y. Qiu, Y. Cui, X.-M. Wang, Natural bone tissue and its biomimetic, Elsevier, Mineralized Collagen Bone Graft Substitutes, 2019.

A. Boskey, A. Posner, Bone structure, composition, and mineralization, Orthoped. Clin. North Am. 15 (4) (1984) 597–612.

P. Fratzl, R. Weinkamer, Hierarchical Structure and Repair of Bone: Deformation, Remodelling, Healing. Self-healing Material, Springer, 2007.

C.R. Perry, Bone Repair Techniques, Bone Graft, and Bone Graft Substitutes 360, Clinical Orthopaedics and Related Research, 1999.

Baroli B. From natural bone grafts to tissue engineering therapeutics: brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci. 2009.

Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 20119.

Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG. Evolution of bone

bone. Biomaterials. 1996.

Gazdag AR, Lane JM, Glaser D, Forster RA. Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg. 1995.

O’Keefe RJ, Mao J. Bone tissue engineering and regeneration: from discovery to the clinic--an overview. Tissue Eng Part B Rev. 2011.

Dorozhkin, Sergey V., Calcium Orthophosphate (CaPO4) Scaffolds for Bone Tissue Engineering Applications. Journal of Biotechnology and Biomedical Science, 2018.

Zhang, Meng, Lin, Rongcai, Wang, Xin, et al., 3D printing of Haversian bone–mimicking scaffolds for multicellular delivery in bone regeneration. Science advances, 2020.

McKee MD, Pedraza CE, Kaartinen MT. Osteopontin and wound healing in bone. Cells Tissues Organs. 2011.

Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. Journal of nanoscience and nanotechnology. 2014.

Tang, J.D., C. Mura, and K.J. Lampe, Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering. Journal of the American Chemical Society, 2019.

Zhang, Y., et al., Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering. Biomacromolecules, 2019.

You, F., et al., 3D Printing of Porous Cell-Laden Hydrogel Constructs for Potential Applications in Cartilage Tissue Engineering. ACS Biomaterials Science & Engineering, 2016.

Gonzalez-Fernandez, T., et al., Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues. Journal of Controlled Release, 2019.

Unagolla, J.M. and A.C. Jayasuriya, Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Applied Materials Today, 2020.

14. Schwartz, R., et al., Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution. Journal of the Mechanical Behavior of Biomedical Materials, 2020.

15. Ning, L., et al., Bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions. Journal of Materials Chemistry B, 2019.

16. Ahn, S., et al., Cells (MC3T3-E1)-Laden Alginate Scaffolds Fabricated by a Modified Solid-Freeform Fabrication Process Supplemented with an Aerosol Spraying. Biomacromolecules, 2012.

Addad S., Exposito J. Y., Faye C., Ricard-Blum S., Lethias C. (2011). Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar. Drugs 9, 967–983. 10.3390/md906096.

Arakawa C., Ng R., Tan S., Kim S., Wu B., Lee M. (2017). Photopolymerizable chitosan–collagen hydrogels for bone tissue engineering. J. Tissue Eng. Regen. Med. 11, 164–174. 10.1002/term.1896.

K.E. Kadler, C. Baldock, J. Bella, R.P. Boot-Handford, Collagens at a glance, J. Cell Sci. 120 (12) (2007) 1955–1958. L. Guo et al. Journal of Controlled Release 338 (2021).

M.F. Abazari, F. Soleimanifar, M. Amini Faskhodi, R.N. Mansour, J. Amini Mahabadi, S. Sadeghi, et al., Improved osteogenic differentiation of human induced pluripotent stem cells cultured on polyvinylidene fluoride/collagen/ platelet-rich plasma composite nanofibers, J. Cell. Physiol. 235 (2) (2020).

R.N. Mansour, F. Soleimanifar, M.F. Abazari, S. Torabinejad, A. Ardeshirylajimi, P. Ghoraeian, et al., Collagen coated electrospun polyethersulfon nanofibers improved insulin producing cells differentiation potential of human induced pluripotent stem cells, Artif. Cells Nanomed. Biotechnol. 46 (sup3) (2018).

P. Fratzl, Collagen: structure and mechanics, an introduction, Springer, Collagen, 2008.

J.K. Mouw, G. Ou, V.M. Weaver, Extracellular matrix assembly: a multiscale deconstruction, Nat. Rev. Mol. Cell Biol. 15 (12) (2014).

J.P. Orgel, T.C. Irving, A. Miller, T.J. Wess, Microfibrillar structure of type I collagen in situ, Proc. Natl. Acad. Sci. 103 (24) (2006).

M.J. Olszta, X. Cheng, S.S. Jee, R. Kumar, Y.-Y. Kim, M.J. Kaufman, et al., Bone structure and formation: a new perspective, Mater. Sci. Eng. R. Rep. 58 (3–5) (2007).

P.K. Dutta, J. Dutta, V. Tripathi, Chitin and chitosan: Chemistry, Properties and Applications, 2004.

C. Peniche, W. Argüelles-Monal, F. Goycoolea, Chitin and Chitosan: Major Sources, Properties and Applications. Monomers, Polymers and Composites from Renewable Resources, Elsevier, 2008.

S.S. Silva, M.I. Santos, O. Coutinho, J. Mano, R. Reis, Physical properties and biocompatibility of chitosan/soy blended membranes, J. Mater. Sci. Mater. Med. 16 (6) (2005) 575–579.

M. Hosseini, K. Dadashi-Noshahr, M. Islami, E. Saburi, A.R. Nikpoor, A. Mellati, et al., A novel silk/PES hybrid nanofibrous scaffold promotes the in vitro proliferation and differentiation of adipose-derived mesenchymal stem cells into insulin producing cells, Polym. Adv. Technol. 31 (8) (2020).

I.-Y. Kim, S.-J. Seo, H.-S. Moon, M.-K. Yoo, I.-Y. Park, B.-C. Kim, et al., Chitosan and its derivatives for tissue engineering applications, Biotechnol. Adv. 26 (1) (2008).

P. Carvalho, M. Rodrigues, R. Reis, M. Gomes, Starch-based blends in tissue engineering, Biomateri. Nature Adv. Devices Therapies. 244 (2016).

S. Wang, L. Copeland, Effect of acid hydrolysis on starch structure and functionality: A review, Crit. Rev. Food Sci. Nutr. 55 (8) (2015).

M.R. Roslan, N.M. Nasir, E. Cheng, N. Amin, Tissue engineering scaffold based on starch: A review, in: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), IEEE, 2016.

P.B. Malafaya, G.A. Silva, R.L. Reis, Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications, Adv. Drug Deliv. Rev. 59 (4–5) (2007).

H. Ismail, M. Irani, Z. Ahmad, Starch-based hydrogels: present status and applications, Int. J. Polym. Mater. Polym. Biomater. 62 (7) (2013).

Shi C., Yuan Z., Han F., Zhu C., Li B. Polymeric biomaterials for bone regeneration. Ann. Jt. 2016;1:1–14.

Kim MS, Kim G. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohydrate polymers. 2014 Dec 19;114:213-21.

Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2010 Jul;94(1):241-51.

Deng Y, Yang WZ, Shi D, Wu M, Xiong XL, Chen ZG, Wei SC. Bioinspired and osteopromotive polydopamine nanoparticle-incorporated fibrous membranes for robust bone regeneration. NPG Asia Materials. 2019 Dec;11(1):39.

Ho TC, Chang CC, Chan HP, Chung TW, Shu CW, Chuang KP, Duh TH, Yang MH, Tyan YC. Hydrogels: Properties and Applications in Biomedicine. Molecules. 2022 May 2;27(9):2902.

Kashyap N, Kumar N, Kumar MN. Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst. 2005;22(2):107-49.

Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng. 2010;1:149-73.

Lambert S, Sinclair C, Boxall A. Occurrence, degradation, and effect of polymer-based materials in the environment. Rev Environ Contam Toxicol. 2014;227:1-53.

Guo L, Liang Z, Yang L, Du W, Yu T, Tang H, Li C, Qiu H. The role of natural polymers in bone tissue engineering. J Control Release. 2021 Oct 10;338:571-582.

Titorencu I, Albu MG, Nemecz M, Jinga VV. Natural Polymer-Cell Bioconstructs for Bone Tissue Engineering. Curr Stem Cell Res Ther. 2017;12(2):165-174.

A Alamir HT, Ismaeel GL, Jalil AT, Hadi WH, Jasim IK, Almulla AF, Radhea ZA. Advanced injectable hydrogels for bone tissue regeneration. Biophys Rev. 2023 Apr 13;15(2):223-237.

Athanasiadou D, Meshry N, Monteiro NG, Ervolino-Silva AC, Chan RL, McCulloch CA, Okamoto R, Carneiro KMM. DNA hydrogels for bone regeneration. Proc Natl Acad Sci U S A. 2023 Apr 25;120(17):e2220565120.

Bektas, C.; Mao, Y. Hydrogel Microparticles for Bone Regeneration. Gels 2024, 10, 28.

Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, Noh I, Lee SH, Park Y, Sun K. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials. 2007 Apr;28(10):1830-7.