Zinc oxide nanoparticles fabricated with phytoextracts for the control of mosquito vectors- A systemic Review

Main Article Content

Ananth Sivapunniyam
Thangamathi Perumal
Nandhini Vasu
Tamizhisai Kavidasan
Prabukumar Seetharaman
Karthik Raja
Malarvizhi Stalin

Abstract

Transmission of pathogens by mosquito vectors pose serious challenges to public health. Controlling the vectors is a promising option in preventing the spread of infectious agents.  Several chemical approaches though effectively control mosquitoes, proved to cause side effects including resistant mosquito species and environmental contamination. Green chemistry mediated nanoparticles synthesis is simple, quick, economically modest and environmentally safe and hence could be a safe alternative. The purpose of this review is to categorise, analyse, and organise the main findings from research papers on plant extract mediated zinc oxide nanoparticles (ZnO-NPs) with potential larvicidal properties. The investigation involved analysing the published literature from different scientific databases. The main focus was on identifying scientific reports on the green synthesized ZnO-NPs that showed the larvicidal potency (LC50) less than 25 μg/mL. Further, the review discusses the various methods of synthesis of ZnO-NPs and their mechanism of toxicity against mosquito larvae. The consolidated and organized information presented in this review can be effectively utilized for the design, development, and optimization of phyto-mediate nanoparticles synthesis with potential larvicidal activity. The summarized data provides a foundation for further research and application in the field of herbal insecticides, particularly focusing on their larvicidal properties.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ananth Sivapunniyam, Thangamathi Perumal, Nandhini Vasu, Tamizhisai Kavidasan, Prabukumar Seetharaman, Karthik Raja, & Malarvizhi Stalin. (2024). Zinc oxide nanoparticles fabricated with phytoextracts for the control of mosquito vectors- A systemic Review. Journal of Advanced Zoology, 45(2), 1663–1681. https://doi.org/10.53555/jaz.v45i2.4072
Section
Articles
Author Biographies

Ananth Sivapunniyam

Department of Biotechnology, Annai College of Arts & Science, Kovilacheri, Kumbakonam, Tamil Nadu, India

Thangamathi Perumal

PG & Research Department of Zoology, Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur, Tamil Nadu, India-613007. +91 9677348991

Nandhini Vasu

PG & Research Department of Zoology, Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur-613007, Tamil Nadu, India.

Tamizhisai Kavidasan

PG & Research Department of Zoology, Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur-613007, Tamil Nadu, India

Prabukumar Seetharaman

Laboratory of Functional Molecules and Materials. School of Physics and Optoelectronic Engineering Shandong University of Technology-255000, Xincun West Road 266, Zibo, China

Karthik Raja

Department of Research innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai-602105, Tamil Nadu, India

Malarvizhi Stalin

PG & Research Department of Zoology, Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur-613007, Tamil Nadu, India

References

Abinaya, M., Vaseeharan, B., Divya, M., Sharmili, A., Govindarajan, M., Alharbi, N.S., Kadaikunnan, S., Khaled, J.M., Benelli, G., 2018. Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J Trace Elem Med Biol. 45, 93-103.

Agarwal, H., Kumar, S.V., Rajeshkumar, S., 2017. A review on green synthesis of zinc oxide nanoparticles -An eco-friendly approach. Reffit. 3 (4), 406-413.

Ahmad, S., Mfarrej, M.F.B., El-Esawi, M.A., Waseem, M., Alatawi, A., Nafees, M., Saleem, M.H., Rizwan, M., Yasmeen, T., Anayat, A., Ali, S., 2022. Chromium-resistant Staphylococcus aureus alleviates chromium toxicity by developing synergistic relationships with zinc oxide nanoparticles in wheat. Ecotoxicol. Environ. Saf. 230, 113-142.

Al-Dhabi, N.A., Valan Arasu, M., 2018. Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomater. 8 (7), 500.

Ali, J., Ali, N., Wang, L., Waseem, H., Pan, G., 2019. Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J. Microbiol. Methods. 159, 18-25.

Alphey, L., Benedict, M., Bellini, R., Clark, G.G., Dame, D.A., Service, M.W., Dobson, S.L., 2010. Sterile-insect methods for control of mosquito-borne diseases: an analysis. J. Vector Borne Dis. 10 (3), 295-311.

Amuthavalli, P., Hwang, J.S., Dahms, H.U., Wang, L., Anitha, J., Vasanthakumaran, M., Gandhi, A.D., Murugan, K., Subramaniam, J., Paulpandi, M., Chandramohan, B., 2021. Zinc oxide nanoparticles using plant Lawsonia inermis and their mosquitocidal, antimicrobial, anticancer applications showing moderate side effects. Sci. Rep. 11(1), 8837.

Ananth, S., Thangamathi, P., 2018. Larvicidal efficacy of fabricated silver nanoparticles from butea monosperma flower extract against dengue vector, aedes aegypti. In. J. Bio. Sci. 8(1), 20-29.

Ananthi, S., Kavitha, M., Kumar, E.R., Prakash, T., Poonguzhali, R.V., Ranjithkumar, B., Balamurugan, A., Srinivas, C., Sastry, D.L., 2022. Investigation of physicochemical properties of ZnO nanoparticles for gas sensor applications. Inorg. Chem. Commun. 146, 110152.

Anitha, R., Ramesh, K.V., Ravishankar, T.N., Kumar, K.S., Ramakrishnappa, T., 2018. Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by the Artocarpus gomezianus fruit mediated facile green combustion method. Adv. Mater, 3(4), 440-451.

Baruah, A., Basu, M., Amuley, D., 2021. Modeling of an autonomous hybrid renewable energy system for electrification of a township: A case study for Sikkim, India. Renew. Sust. Energ. Rev, 135, 110158.

Basnet, P., Chanu, T.I., Samanta, D., Chatterjee, S., 2018. A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. J. Photochem. Photobiol. B, Biol. 183, 201-221.

Bekkari, R., Boyer, D., Mahiou, R., Jaber, B., 2017. Influence of the sol gel synthesis parameters on the photoluminescence properties of ZnO nanoparticles. Mater. Sci. Semicond 71, 181-187.

Benelli, G., 2015. Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol. Res. 114 (9), 3201-3212.

Benelli, G., Maggi, F., Pavela, R., Murugan, K., Govindarajan, M., Vaseeharan, B., Petrelli, R., Cappellacci, L., Kumar, S., Hofer, A., Youssefi, M.R., 2018. Mosquito control with green nanopesticides: towards the One Health approach? A review of non-target effects. Environ. Sci. Pollut. 25 (11), 10184-10206.

Benelli, G., Mehlhorn, H., 2016. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol. Res. 115, 1747-1754.

Brintha, S.R., Ajitha, M., 2015. Synthesis and characterization of ZnO nanoparticles via aqueous solution, sol-gel and hydrothermal methods. IOSR J Appl Chem, 8 (11), 66-72.

Chandrasekaran, R., Gnanasekar, S., Seetharaman, P., Keppanan, R., Arockiaswamy, W., Sivaperumal, S., 2016. Formulation of Carica papaya latex-functionalized silver nanoparticles for its improved antibacterial and anticancer applications. J. Mol. Liq. 219, 232-238.

Chinnathambi, A., Alharbi, S.A., Lavarti, R., Jhanani, G.K., On-Uma, R., Jutamas, K. and Anupong, W., 2023. Larvicidal and pupicidal activity of phyto-synthesized zinc oxide nanoparticles against dengue vector aedes aegypti. Environ. Res. 216, 114574.

Chung, S.K., Seo, J.Y., Lim, J.H., Park, H.H., Yea, M.J., Park, H.J., 2013. Microencapsulation of essential oil for insect repellent in food packaging system. J. Food Sci. 78 (5), E709-E714.

Dahmana, H. and Mediannikov, O., 2020. Mosquito-borne diseases emergence/resurgence and how to effectively control it biologically. J. Pathog. 9 (4), 310.

Devatha, C.P., Thalla, A.K., 2018. Green synthesis of nanomaterials, In Synthesis of inorganic nanomaterials. Woodhead Pub. 169-184.

Dhavan, P.P., Jadhav, B.L., 2020. Eco-friendly approach to control dengue vector Aedes aegypti larvae with their enzyme modulation by Lumnitzera racemosa fabricated zinc oxide nanorods. SN Appl. Sci. 2, 1-15.

Dida, G.O., Gelder, F.B., Anyona, D.N., Abuom, P.O., Onyuka, J.O., Matano, A.S., Adoka, S.O., Kanangire, C.K., Owuor, P.O., Ouma, C., Ofulla, A.V., 2015. Presence and distribution of mosquito larvae predators and factors influencing their abundance along the Mara River, Kenya and Tanzania. Sp.Plus. 4 (1), 1-14.

Dwivedi, A.D., Gopal, K., 2010. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A Physicochem. Eng. Asp. 369 (1-3), 27-33.

Falcaro, P., Ricco, R., Yazdi, A., Imaz, I., Furukawa, S., Maspoch, D., Ameloot, R., Evans, J.D., Doonan, C.J., 2016. Application of metal and metal oxide nanoparticles@ MOFs. Coord. Chem. Rev. 307, 237-254.

Fierro, J.L.G. ed., 2005. Metal oxides: chemistry and applications. CRC press.

Folorunso, A., Akintelu, S., Oyebamiji, A.K., Ajayi, S., Abiola, B., Abdusalam, I., Morakinyo, A., 2019. Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. JNC. 9, 111-117.

George, J.T., Lenin, A., Koshy, M., Vignesh, C.V., Sathyendra, S., 2023. Central nervous system manifestations of dengue infection: data from a tertiary care Centre in South India. Postgrad. Med. J. 99 (1168), 50-55.

Grieco, J.P., Achee, N.L., Sardelis, M.R., Chauhan, K.R., Roberts, D.R., 2005. A Novel High-Throughput Screening System to Evaluate the Behavioral Response of Adult Mosquitoes to Chemicals1. J. Am. Mosq. Control Assoc. 21(4), 404-411.

Grzywacz, D., Stevenson, P.C., Mushobozi, W.L., Belmain, S., Wilson, K., 2014. The use of indigenous ecological resources for pest control in Africa. Food Secur. 6, 71-86.

Gudikandula, K., Vadapally, P., Charya, M.S., 2017. Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies. OpenNano, 2, 64-78.

Guldiken, B., Gibis, M., Boyacioglu, D., Capanoglu, E., Weiss, J., 2018. Physical and chemical stability of anthocyanin-rich black carrot extract-loaded liposomes during storage. Food Res. Int. 108, 491-497.

Harbach, R.E., 2007. The Culicidae (Diptera): a review of taxonomy, classification and phylogeny. Zootaxa, 1668 (1), 591-638.

Hay, S.I., Sinka, M.E., Okara, R.M., Kabaria, C.W., Mbithi, P.M., Tago, C.C., Benz, D., Gething, P.W., Howes, R.E., Patil, A.P., Temperley, W.H., 2010. Developing global maps of the dominant Anopheles vectors of human malaria. Plos. medicine. 7 (2), e1000209.

Hayashi, H., Hakuta, Y., 2010. Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. J.Mater. 3 (7), 3794-3817.

Hemingway, J., Ranson, H., 2000. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45 (1), 371-391.

Ishwarya, R., Vaseeharan, B., Subbaiah, S., Nazar, A.K., Govindarajan, M., Alharbi, N.S., Kadaikunnan, S., Khaled, J.M., Al-Anbr, M.N., 2018. Sargassum wightii-synthesized ZnO nanoparticles–from antibacterial and insecticidal activity to immunostimulatory effects on the green tiger shrimp Penaeus semisulcatus. J. Photochem. Photobiol. B, Biol. 183, 318-330.

Ismail, S.M.M., Ahmed, S.M., Abdulrahman, A.F., AlMessiere, M.A., 2023. Characterization of green synthesized of ZnO nanoparticles by using pinus brutia leaves extracts. J. Mol. Struct. 1280, 135063.

Jadhav, P., Shinde, S., Suryawanshi, S.S., Teli, B., Patil, P.S., Ramteke, A.A., Hiremath, N.G., Prasad, N.R., 2020. Green AgNPs decorated ZnO nanocomposites for dye degradation and antimicrobial applications. Eng. sci. 12, 79-94.

Jayaseelan, C., Abdulhaq, A., Ragavendran, C., Mohan, S., 2022. Phytoconstituents assisted biofabrication of copper oxide nanoparticles and their antiplasmodial, and antilarval efficacy: a novel approach for the control of parasites. Mol. 27 (23), 8269.

Jiang, Z., Li, L., Huang, H., He, W., Ming, W., 2022. Progress in laser ablation and biological synthesis processes: “Top-Down” and “Bottom-Up” approaches for the green synthesis of Au/Ag nanoparticles. Int. J. Mol. Sci. 23 (23), 14658.

Jongthawin, J., Intapan, P.M., Sanpool, O., Janwan, P., Sadaow, L., Thanchomnang, T., Laymanivong, S., Maleewong, W., 2016. Molecular phylogenetic confirmation of Gnathostoma spinigerum Owen, 1836 (Nematoda: Gnathostomatidae) in Laos and Thailand. Folia Parasitol. 63, 002.

Kalaimurgan, D., Lalitha, K., Govindarajan, R.K., Unban, K., Shivakumar, M.S., Venkatesan, S., Khanongnuch, C., Husain, F.M., Qais, F.A., Hasan, I., Karuppiah, P., 2023. Biogenic synthesis of zinc oxide nanoparticles using Drynaria Quercifolia tuber extract for antioxidant, antibiofilm, larvicidal, and photocatalytic applications. Biomass Convers. Biorefin. 1-17.

Kaushik, A., Singh, M., Verma, G., 2010. Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr. Polym. 82 (2), 337-345.

Kocbek, P., Teskač, K., Kreft, M.E., Kristl, J., 2010. Toxicological aspects of long‐term treatment of keratinocytes with ZnO and TiO2 nanoparticles. Smal, 6 (17), 1908-1917.

Koudou, B.G., de Souza, D.K., Biritwum, N.K., Bougma, R., Aboulaye, M., Elhassan, E., Bush, S., Molyneux, D.H., 2018. Elimination of lymphatic filariasis in west African urban areas: is implementation of mass drug administration necessary?. Lancet Infect Dis.18 (6), e214-e220.

Kundu, D., Hazra, C., Chatterjee, A., Chaudhari, A., Mishra, S., 2014. Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J. Photochem. Photobiol. B, Biol. 140, 194-204.

Lee, Y., Choi, J.R., Lee, K.J., Stott, N.E., Kim, D., 2008. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. J. Nanotechnol. 19 (41), 415604.

Li, Y., Gao, W., Ci, L., Wang, C., Ajayan, P.M., 2010. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon. 48 (4), 1124-1130.

Li, Y., Zhou, W., Hu, B., Min, M., Chen, P., Ruan, R.R., 2011. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Bioresour. Technol. 102 (23), 10861-10867.

Loganathan, S., Manimaran, K., Mutamimurugan, K., Prakash, D.G., Subashini, R., 2023. Synthesis of zinc oxide nanoparticles by Pterolobium hexapetalum (Roth) Santapau and Wagh extract and their biological applications. Biomass Convers. Biorefin. 1-12.

Ma, H., Williams, P.L., Diamond, S.A., 2013. Ecotoxicity of manufactured ZnO nanoparticles–a review. Environ. Pollut. 172, 76-85.

MacGregor, P., Matthews, K.R., 2008. Modelling trypanosome chronicity: VSG dynasties and parasite density. Trends Parasitol. 24 (1), 1-4.

Madhumitha, G., Elango, G., Roopan, S.M., 2016. Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications. Appl. Microbiol. Biotechnol. 100, 571-581.

Makarov, V.V., Love, A.J., Sinitsyna, O.V., Makarova, S.S., Yaminsky, I.V., Taliansky, M.E., Kalinina, N.O., 2014. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat. 6 (1(20)), 35-44.

Manzo, S., Rocco, A., Carotenuto, R., De Luca Picione, F., Miglietta, M.L., Rametta, G., Di Francia, G., 2011. Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms. Environ. Sci. Pollut. Res. 18, 756-763.

Manzoor, U., Zahra, F.T., Rafique, S., Moin, M.T., Mujahid, M., 2015. Effect of synthesis temperature, nucleation time, and postsynthesis heat treatment of ZnO nanoparticles and its sensing properties. J. Nanomater. 16 (1), 9-9.

Miresmailli, S. and Isman, M.B., 2014. Botanical insecticides inspired by plant–herbivore chemical interactions. Trends Plant Sci. 19 (1), 29-35.

Mohd Yusof, H., Abdul Rahman, N.A., Mohamad, R., Zaidan, U.H., Samsudin, A.A., 2020. Biosynthesis of zinc oxide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties. Sci. Rep. 10 (1), 19996.

Moiroux, N., Djènontin, A., Zogo, B., Bouraima, A., Sidick, I., Pigeon, O., Pennetier, C., 2018. Small-scale field testing of alpha-cypermethrin water-dispersible granules in comparison with the recommended wettable powder formulation for indoor residual spraying against malaria vectors in Benin. J. Parasitol. 11 (1), 1-8.

Morandi, S., Fioravanti, A., Cerrato, G., Lettieri, S., Sacerdoti, M., Carotta, M.C., 2017. Facile synthesis of ZnO nano-structures: Morphology influence on electronic properties. Sens. Actuators B Chem. 249, 581-589.

Mostafa, M.H., Aleem, S.H.A., Ali, S.G., Abdelaziz, A.Y., Ribeiro, P.F., Ali, Z.M., 2020. Robust energy management and economic analysis of microgrids considering different battery characteristics. IEEE. 8, 54751-54775.

Murugan, K., Roni, M., Panneerselvam, C., Suresh, U., Rajaganesh, R., Aruliah, R., Mahyoub, J.A., Trivedi, S., Rehman, H., Al-Aoh, H.A.N., Kumar, S., 2018. Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera. Physiol. Mol. Plant Pathol. 101, 202-213.

Naqqash, M.N., Gökçe, A., Bakhsh, A., Salim, M., 2016. Insecticide resistance and its molecular basis in urban insect pests. Parasitol. Res. 115, 1363-1373.

Narayanan, K.B., Sakthivel, N., 2010. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 156 (1-2), 1-13.

Nityasree, B.R., Chalannavar, R.K., Kouser, S., Divakar, M.S., Gani, R.S., Sowmyashree, K., Malabadi, R.B., 2021. Bioinspired synthesis of zinc oxide nanoparticles by using leaf extract of Solanum lycopersicum L. for larvicidal activity of Aedes aegypti L. Advances in Natural Sciences J. Nanosci. Nanotechnol. 12 (1), 015009.

Nivetha, K., Vinotha, V., Albeshr, M.F., Mahboob, S., Manzoor, I., Govindarajan, M., Vaseeharan, B., 2022. Synthesis and characterization of Vitis vinifera exocarp-mediated ZnO nanoparticles: An evaluation of biological potential and ecotoxicity. J Drug Deliv Sci Technol. 77, 103846.

Olejnik, M., Kersting, M., Rosenkranz, N., Loza, K., Breisch, M., Rostek, A., Prymak, O., Schürmeyer, L., Westphal, G., Köller, M., Bünger, J., 2021. Cell-biological effects of zinc oxide spheres and rods from the nano-to the microscale at sub-toxic levels. Cell Biol. Toxicol. 37, 573-593.

Padmavathy, N., Vijayaraghavan, R., 2008. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. 23.

Patil, S., Chandrasekaran, R., 2020. Biogenic nanoparticles: A comprehensive perspective in synthesis, characterization, application and its challenges. JGEB. 18, 1-23.

Pitchaimuthu, S., Honda, K., Suzuki, S., Naito, A., Suzuki, N., Katsumata, K.I., Nakata, K., Ishida, N., Kitamura, N., Idemoto, Y., Kondo, T., 2018. Solution plasma process-derived defect-induced heterophase anatase/brookite TiO2 nanocrystals for enhanced gaseous photocatalytic performance. ACS omega, 3 (1), 898-905.

Poulose, B.K., Shelton, J., Phillips, S., Moore, D., Nealon, W., Penson, D., Beck, W., Holzman, M.D., 2012. Epidemiology and cost of ventral hernia repair. Hernia.Res. 16, 179-183.

Prajapati, V., Tripathi, A.K., Aggarwal, K.K., Khanuja, S.P.S., 2005. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour. Technol. 96 (16), 1749-1757.

Rafique, M., Rafique, M.S., Kalsoom, U., Afzal, A., Butt, S.H., Usman, A., 2019. Laser ablation synthesis of silver nanoparticles in water and dependence on laser nature. Opt Quantum Electron. 51, 1-11.

Ragavendran, C., Kamaraj, C., Jothimani, K., Priyadharsan, A., Kumar, D.A., Natarajan, D., Malafaia, G., 2023. Eco-friendly approach for ZnO nanoparticles synthesis and evaluation of its possible antimicrobial, larvicidal and photocatalytic applications. SM&T. 36, e00597.

Rajesh, Y., Padhi, S.K., Krishna, M.G., 2020. ZnO thin film-nanowire array homo-structures with tunable photoluminescence and optical band gap. RSC advances, 10 (43), 25721-25729.

Ramani, M., Ponnusamy, S., Muthamizhchelvan, C., Marsili, E., 2014. Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity. Colloids Surf. B. 117, 233-239.

Ramkumar, G., Muthusamy, R., Narayanan, M., Dhanapal, R., Karthik, C., Shivakumar, M.S., Malathi, G., Kariyanna, B., 2022. Pretreatment of mosquito larvae with ultraviolet-B and nitropolycyclic aromatic hydrocarbons induces increased sensitivity to permethrin toxicity. Hel. 8 (10).

Rankic, I., Zelinka, R., Ridoskova, A., Gagic, M., Pelcova, P., Huska, D., 2021. Nano/microparticles in conjunction with microalgae extract as novel insecticides against Mealworm beetles, Tenebrio molitor. Sci. Rep. 11 (1), 17125.

Rather, G.A., Nanda, A., Ezhumalai, P., 2022. Mosquito Larvicidal Activity of ZnO Nanoparticles against Dengue Causing Vector Aedes Albopictus Using Leaf Extract of Lavandula Angustifolia. J Nanostruct. 12 (3), 625-632.

Rezaei, B., Lotfi-Forushani, H., Ensafi, A.A., 2014. Modified Au nanoparticles-imprinted sol–gel, multiwall carbon nanotubes pencil graphite electrode used as a sensor for ranitidine determination. Mater. Sci. Eng. C, 37, 113-119.

Roopan, S.M., Mathew, R.S., Mahesh, S.S., Titus, D., Aggarwal, K., Bhatia, N., Damodharan, K.I., Elumalai, K., Samuel, J.J., 2019. Environmental friendly synthesis of zinc oxide nanoparticles and estimation of its larvicidal activity against Aedes aegypti. International J. Environ. Sci. Technol. 16, 8053-8060.

Sabir, S., Arshad, M., Chaudhari, S.K., 2014. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci. World J. 20-14.

Sahai, A., Goswami, N., 2015, June. Structural and optical investigations of oxygen defects in zinc oxide nanoparticles. In AIP Conference Proceedings (Vol. 1665, No. 1). AIP Publishing.

Salam, H.A., Sivaraj, R., Venckatesh, R., 2014. Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Mater. Lett. 131, 16-18.

Sangeetha, G., Rajeshwari, S., Venckatesh, R., 2011. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Mater. Res. Bull. 46 (12), 2560-2566.

Shaalan, E.A.S., Canyon, D.V., 2009. Aquatic insect predators and mosquito control. Trop. Biomed. 26, 223-261.

Shamaila, S., Sajjad, A.K.L., Farooqi, S.A., Jabeen, N., Majeed, S., Farooq, I., 2016. Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl. Mater. Today. 5, 150-199.

Singh, G., Babele, P.K., Kumar, A., Srivastava, A., Sinha, R.P., Tyagi, M.B., 2014. Synthesis of ZnO nanoparticles using the cell extract of the cyanobacterium, Anabaena strain L31 and its conjugation with UV-B absorbing compound shinorine. J. Photochem. Photobiol. B, Biol. 138, 55-62.

Singh, J., Dutta, T., Kim, K.H., Rawat, M., Samddar, P.,Kumar, P., 2018. ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnology. 16 (1), 1-24.

Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H., Mohamad, D., 2015. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro. 7, 219-242.

Soni, N., Dhiman, R.C., 2020. Larvicidal and antibacterial activity of aqueous leaf extract of Peepal (Ficus religiosa) synthesized nanoparticles. Parasite Epidemiol. Control. 11, e00166.

Sundararaj, A., Chandrasekaran, G., 2017. Induced phase transition from ZnO to Co3O4 through Co substitution. Nano-Struct. 11, 20-24.

Sundari, S.K., Jeyachandran, S., Nagesh, S., 2023. Green Synthesis and Characterization of Xanthium strumarium-Mediated Titanium Dioxide Nanoparticles. Cureus. 15(12).

Tahir, A., Quispe, C., Herrera-Bravo, J., Iqbal, H., Anum, F., Javed, Z., Sehar, A., Sharifi-Rad, J., 2022. Green synthesis, characterization and antibacterial, antifungal, larvicidal and anti-termite activities of copper nanoparticles derived from Grewia asiatica L. BNRC. 46 (1), 1-11.

Talebian, N., Amininezhad, S.M., Doudi, M., 2013. Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B, Biol. 120, 66-73.

Toshima, N., Yonezawa, T., 1998. Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem. 22 (11), 1179-1201.

Tso, C.P., Zhung, C.M., Shih, Y.H., Tseng, Y.M., Wu, S.C., Doong, R.A., 2010. Stability of metal oxide nanoparticles in aqueous solutions. Water Sci. Technol. 61 (1), 127-133.

Turek, C., Stintzing, F.C., 2013. Stability of essential oils: a review. Compr. Rev. Food Sci. 12 (1), 40-53.

Vellore Nagarajan, K., Vijayarangan, D.R., 2019. Lagenaria siceraria–synthesised ZnO NPs–a valuable green route to control the malaria vector Anopheles stephensi. IET Nanobiotechnol. 13 (2), 170-177.

Velsankar, K., Sudhahar, S., Maheshwaran, G., 2019. Effect of biosynthesis of ZnO nanoparticles via Cucurbita seed extract on Culex tritaeniorhynchus mosquito larvae with its biological applications. J. Photochem. Photobiol. B, Biol. 200, 111650.

Vijayakumar, S., Vaseeharan, B., Malaikozhundan, B., Shobiya, M., 2016. Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomed. Pharmacother. 84, 1213-1222.

Vinotha, V., Yazhiniprabha, M., Raj, D.S., Mahboob, S., Al-Ghanim, K.A., Al-Misned, F., Govindarajan, M., Vaseeharan, B., 2020. Biogenic synthesis of aromatic cardamom-wrapped zinc oxide nanoparticles and their potential antibacterial and mosquito larvicidal activity: An effective eco-friendly approach. J. Environ. Chem. Eng. 8 (6), 104466.

Yamamoto, O., 2001. Influence of particle size on the antibacterial activity of zinc oxide. Int. j. inorg. mater. 3 (7), 643-646.

Yang, H., Liu, C., Yang, D., Zhang, H., Xi, Z., 2009. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol. 29 (1), 69-78.

Yazhiniprabha, M., Vaseeharan, B., Sonawane, A. Behera, A., 2019. In vitro and in vivo toxicity assessment of phytofabricated ZnO nanoparticles showing bacteriostatic effect and larvicidal efficacy against Culex quinquefasciatus. J. Photochem. Photobiol. B, Biol. 192, 158-169.

Yuvakkumar, R., Suresh, J., Nathanael, A.J., Sundrarajan, M., Hong, S.I., 2014. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater. Sci. Eng. C, 41, 17-27.

Soni N, Prakash S, 2012. Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasit. Res. Jan; 110: 175-84.

Soni N, Dhiman RC, 2020. Larvicidal and antibacterial activity of aqueous leaf extract of Peepal (Ficus religiosa) synthesized nanoparticles. Parasi. Epide. Con. Nov 1; 11: e00166.

Amuthavalli P, Hwang JS, Dahms HU, Wang L, Anitha J, Vasanthakumaran M, Gandhi AD, Murugan K, Subramaniam J, Paulpandi M, Chandramohan B, 2021. Zinc oxide nanoparticles using plant Lawsonia inermis and their mosquitocidal, antimicrobial, anticancer applications showing moderate side effects. Scientific reports. Apr 23; 11 (1): 8837.

Bashir SM, Ahmed Rather G, Patrício A, Haq Z, Sheikh AA, Shah MZ, Singh H, Khan AA, Imtiyaz S, Ahmad SB, Nabi S, 2022. Chitosan nanoparticles: a versatile platform for biomedical applications. Materials. Sep 20;15 (19): 6521.

Rather GA, Nanda A, Ezhumalai P, 2022. Mosquito Larvicidal Activity of ZnO Nanoparticles against Dengue Causing Vector Aedes Albopictus Using Leaf Extract of Lavandula Angustifolia. J. Nanostru. Jul 1; 12 (3): 625-32.