Isolate, Purify And Characterise Metallothionein From The Hepatic Cells Of Oreochromis Niloticus [ Linnaeus, 1758]

Main Article Content

Y. Ramesh Babu
B. Meena
Sumit Rose
Asish Sugirthan

Abstract

Objective(s): The present study intends to isolate and purify Metallothionein extracted from the liver tissue of Oreochromis niloticus exposed to Cadmium. Study of MT will help to know its protective role against Cadmium


Method(s): Acclimatised fishes were treated with sub - lethal concentration of Cadmium to induce the synthesis of Metallothionein. MT was isolated and purified from fish liver by affinity chromatography from differential distribution (3KD – 43KD) across eluted fractions. Molecular weight of the purified elute was analysed by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) and Peptide Mass Fingerprinting and confirmed to be Metallothionein.


Findings: Different elute fractions were obtained from the MT specific Affinity Column chromatography. At each fraction-by-fraction purification led to obtaining a single band in the seventh elute fraction. This single band was analysed using MALDI-TOF. Trypsin digestion produced a fragmented peptide mass spectrum. The mass spectrogram revealed a single peak, indicating purified MT protein with a molecular weight of 6140.52 Daltons (~6.2 kDa). The finding contributes valuable insights into Metallothionein structure and properties, and understanding its role in metal detoxification and stress regulating cellular processes.


Novelty: Molecular weight of the Metallothionein from liver tissue of Oreochromis niloticus was found using MALDI-TOF. This method is a simple way to isolate and purify low molecular weight protein like MT.


 

Downloads

Download data is not yet available.

Article Details

How to Cite
Y. Ramesh Babu, B. Meena, Sumit Rose, & Asish Sugirthan. (2022). Isolate, Purify And Characterise Metallothionein From The Hepatic Cells Of Oreochromis Niloticus [ Linnaeus, 1758]. Journal of Advanced Zoology, 43(S1), 472 – 480. https://doi.org/10.53555/jaz.v43iS1.4065
Section
Articles
Author Biographies

Y. Ramesh Babu

Department of Zoology, Presidency college, Chennai, Tamil Nadu 600005

B. Meena

Associate Professor of Zoology, Presidency college, Chennai-600005, India 

Sumit Rose

Associate Professor of Zoology, Presidency College, Chennai-600005, India

 

 

Asish Sugirthan

Department of Zoology, Presidency college, Chennai, Tamil Nadu 600005

References

H. Yepiskoposyan, D. Egli, T. Fergestad, A. Selvaraj, C. Treiber, Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc, 34 (2006) 4866–4877. https://doi.org/10.1093/nar/gkl606.

M.R. Bruins, S. Kapil, F.W. Oehme, Microbial resistance to metals in the environment., Ecotoxicol. Environ. Saf. 45 (2000) 198–207. https://doi.org/10.1006/eesa.1999.1860.

V.B. Margoshes M, A cadmium protein from equine kidney cortex, J Am Chem Soc. 79 (1995) 4813–4.

M. Dabrio, A.R. Rodríguez, G. Bordin, M.J. Bebianno, M. De Ley, I. Šestáková, M. Vašák, M. Nordberg, Recent developments in quantification methods for metallothionein, J. Inorg. Biochem. 88 (2002) 123–134. https://doi.org/10.1016/S0162-0134(01)00374-9.

M.G. Cherian, Metallothionein and Its Interaction with Metals, (1995) 121–137. https://doi.org/10.1007/978-3-642-79162-8_6.

J.H.R. Kägi, A. Schäffer, Biochemistry of Metallothionein, Biochemistry. 27 (1988) 8509–8515. https://doi.org/10.1021/bi00423a001.

G.F. Nordberg, M. Nordberg, Biological Monitoring of Cadmium, in: T.W. Clarkson, L. Friberg, G.F. Nordberg, P.R. Sager (Eds.), Biol. Monit. Toxic Met., Springer US, Boston, MA, 1988: pp. 151–168. https://doi.org/10.1007/978-1-4613-0961-1_6.

Ghosh, S. Ali, S.K. Mukherjee, S. Saha, A. Kaviraj, Bioremediation of Copper and Nickel from Freshwater Fish Cyprinus carpio Using Rhiozoplane Bacteria Isolated from Pistia stratiotes, Environ. Process. 7 (2020) 443–461. https://doi.org/10.1007/s40710-020-00436-5.

N. Sulaiman, S. George, M.D. Burke, Assessment of sublethal pollution impact on flounders in an industrialised estuary using hepatic biochemical indices, Mar. Ecol. Prog. Ser. 68.3 (1991) 207–212. https://eurekamag.com/research/037/221/037221520.php.

C. Hogstrand, C. Haux, Naturally high levels of zinc and metallothionein in liver of several species of the squirrelfish family from Queensland, Australia, Mar. Biol. 125 (1996) 23–31. https://doi.org/10.1007/BF00350757.

A. Ziller, L. Fraissinet-Tachet, Metallothionein diversity and distribution in the tree of life: a multifunctional protein, Metallomics. 10 (2018) 1549–1559. https://doi.org/10.1039/c8mt00165k.

P.-E. Olsson, C. Haux, Increased hepatic metallothionein content correlates to cadmium accumulation in environmentally exposed perch (Perca fluviatilis), Aquat. Toxicol. 9 (1986) 231–242. https://doi.org/https://doi.org/10.1016/0166-445X(86)90011-1.

A. Hartwig, M. Arand, B. Epe, S. Guth, G. Jahnke, A. Lampen, Mode of action-based risk assessment of genotoxic carcinogens, Springer Berlin Heidelberg, 2020. https://doi.org/10.1007/s00204-020-02733-2.

K. Nöstelbacher, M. Kirchgessner, G.I. Stangl, Separation and quantitation of metallothionein isoforms from liver of untreated rats by ion-exchange high-performance liquid chromatography and atomic absorption spectrometry, J. Chromatogr. B Biomed. Sci. Appl. 744 (2000) 273–282. https://doi.org/https://doi.org/10.1016/S0378-4347(00)00258-9.

D.C. Simes, M.J. Bebianno, J.J.G. Moura, Isolation and characterisation of metallothionein from the clam Ruditapes decussatus, Aquat. Toxicol. 63 (2003) 307–318. https://doi.org/https://doi.org/10.1016/S0166-445X(02)00185-6.

R.T. Honda, R.M. Araújo, B.B. Horta, A.L. Val, M. Demasi, One-step purification of metallothionein extracted from two different sources, J. Chromatogr. B. 820 (2005) 205–210. https://doi.org/https://doi.org/10.1016/j.jchromb.2005.03.017.

N.J. Pace, E. Weerapana, Zinc-binding cysteines: diverse functions and structural motifs, Biomolecules. 4 (2014) 419–434. https://doi.org/10.3390/biom4020419.

J.M. Munguti, R. Nairuti, J.O. Iteba, K.O. Obiero, D. Kyule, M.A. Opiyo, J. Abwao, J.G. Kirimi, N. Outa, M. Muthoka, C.M. Githukia, E.O. Ogello, Nile tilapia ( Oreochromis niloticus Linnaeus , 1758 ) culture in Kenya : Emerging production technologies and socio-economic impacts on local livelihoods, (2022) 265–276. https://doi.org/10.1002/aff2.58.

J. Abwao, J. Jung’a, J.E. Barasa, D. Kyule, M. Opiyo, J.F. Awuor, E. Ogello, J.M. Munguti, G.A. Keya, Selective breeding of Nile tilapia, Oreochromis niloticus: A strategy for increased genetic diversity and sustainable development of aquaculture in Kenya, J. Appl. Aquac. 35 (2023) 237–256. https://doi.org/10.1080/10454438.2021.1958728.

P.J. Southgate, Health management in aquaculture, Proc. Br. Soc. Anim. Sci. 2003 (2003) 227–227. https://doi.org/10.1017/s1752756200013843.

M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248–254. https://doi.org/https://doi.org/10.1016/0003-2697(76)90527-3.

Justin I. Odegaard, A. Chawla, A Rapid and Simple Method for Identification of Metallothionein Isoforms in Cultured Human Prostate Cells by MALDI-TOF/TOF Mass Spectrometry, Bone. 23 (2008) 1–7. https://doi.org/10.1021/ac062309s.A.

R. Wang, D.A. Sens, A. Albrecht, S. Garrett, S. Somji, M.A. Sens, X. Lu, Simple method for identification of metallothionein isoforms in cultured human prostate cells by MALDI-TOF/TOF mass spectrometry., Anal. Chem. 79 (2007) 4433–4441. https://doi.org/10.1021/ac062309s.

H.B. Pratap, S.E.W. Bonga, Effects of water-borne cadmium on plasma cortisol and glucose in the cichlid fish Oreochromis mossambicus, Comp. Biochem. Physiol. Part C Comp. Pharmacol. 95 (1990) 313–317. https://doi.org/https://doi.org/10.1016/0742-8413(90)90124-R.

K. Taslima, M. Al-Emran, M.S. Rahman, J. Hasan, Z. Ferdous, M.F. Rohani, M. Shahjahan, Impacts of heavy metals on early development, growth and reproduction of fish – A review, Toxicol. Reports. 9 (2022) 858–868. https://doi.org/https://doi.org/10.1016/j.toxrep.2022.04.013.

A.J. Gutiérrez, D. González-Weller, T. González, A. Burgos, G. Lozano, J.I. Reguera, A. Hardisson, Content of toxic heavy metals (mercury, lead, and cadmium) in canned variegated scallops (Chlamys varia), J. Food Prot. 70 (2007) 2911–2915. https://doi.org/10.4315/0362-028X-70.12.2911.

M. Roméo, Y. Siau, Z. Sidoumou, M. Gnassia-Barelli, Heavy metal distribution in different fish species from the Mauritania coast, Sci. Total Environ. 232 (1999) 169–175. https://doi.org/https://doi.org/10.1016/S0048-9697(99)00099-6.

J. Kovarova, R. Kizek, V. Adam, D. Harustiakova, O. Celechovska, Z. Svobodova, Effect of Cadmium Chloride on Metallothionein Levels in Carp, (2009) 4789–4803. https://doi.org/10.3390/s90604789.

Paranandi, B.F. Asztalos, A. Mangili, J. Kuvin, J. Gerrior, H. Sheehan, S.C. Skinner, A.M. Tang, C.A. Wanke, Short communication: Effects of omega-3 fatty acids on triglycerides and high-density lipoprotein subprofiles in HIV-infected persons with hypertriglyceridemia, AIDS Res. Hum. Retroviruses. 30 (2014) 800–805. https://doi.org/10.1089/aid.2014.0005.

P. Coyle, J.C. Philcox, L.C. Carey, A.M. Rofe, Metallothionein: the multipurpose protein, Cell. Mol. Life Sci. C. 59 (2002) 627–647. https://doi.org/10.1007/s00018-002-8454-2.

N. Singhal, M. Kumar, P.K. Kanaujia, J.S. Virdi, MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis , Front. Microbiol. . 6 (2015). https://www.frontiersin.org/articles/10.3389/fmicb.2015.00791.

J. Rychert, Benefits and Limitations of MALDI-TOF Mass Spectrometry for the Identification of Microorganisms, J. Infect. 2 (2019) 1–5. https://doi.org/10.29245/2689-9981/2019/4.1142.

B. Thiede, W. Höhenwarter, A. Krah, J. Mattow, M. Schmid, F. Schmidt, P.R. Jungblut, Peptide mass fingerprinting., Methods. 35 (2005) 237–247. https://doi.org/10.1016/j.ymeth.2004.08.015.