Removal Efficiency of Synthetic Dyes by Copper Nanoparticles

Main Article Content

P. Backialakshmi
S. Krishnaveni
M. Chitravel
S. Krishnaraj

Abstract

Water contaminant and pathogenic microorganism elimination using nanotechnology is a fantastic potential. NaBH4 was used to create copper nanoparticles, and the effectiveness of the dye removal was assessed. Utilising scanning electron microscopy (SEM), DLS, UV-visible spectroscopy, and energy dispersive analysis by X-rays, the synthesised nanoparticles were characterised. This study examined the elimination of COD and BOD utilising (CuNPs) at various (20–100 ppm) levels. Both the chemical oxygen demand (COD) and the biological oxygen demand (BOD) were shown to be effectively removed by CuNPs. Additionally, the synthesised copper nanoparticles are highly effective at removing synthetic dyes like methyl orange (89%), methylene blue (95%), and malachite green (97%).

Downloads

Download data is not yet available.

Article Details

How to Cite
P. Backialakshmi, S. Krishnaveni, M. Chitravel, & S. Krishnaraj. (2024). Removal Efficiency of Synthetic Dyes by Copper Nanoparticles. Journal of Advanced Zoology, 45(1), 1044–1051. https://doi.org/10.53555/jaz.v45i1.3579
Section
Articles
Author Biographies

P. Backialakshmi

Department of Physics, St. Joseph’s College of Engineering and Technology, Elupatti, Thanjavur – 613 403 Tamil Nadu, India

S. Krishnaveni

Department of Chemistry, St. Joseph’s College of Engineering and Technology , Elupatti, Thanjavur – 613 03, Tamil Nadu, India.

M. Chitravel

Department of Chemistry, St. Joseph’s College of Engineering and Technology, Elupatti, Thanjavur – 613 403, Tamil Nadu, India

S. Krishnaraj

Department of Physics, Periyar Maniammai Institute of Science and Technology, Thanjavur-620 024, Tamil Nadu, India

References

. Li O., Lu C., Liu A., Zhu L., Wang PM., Qian CD., Jiang XH., Wu XC. Bioresour. Technol., 2013, 134, 87–93.

Abdel-Halim E., Al-Deyab SS., Carbohydr. Polym., 2011, 84, 454–458.

Crini, G. Prog. Polym. Sci., 2005, 30, 38–70.

Sharifi S., Behzadi S., Laurent S., Forrest ML., Stroeve P., Mahmoudi M. Chem. Soc. Rev., 2012, 41, 2323–2343.

Gottschalk F., Sonderer T., Scholz RW., Nowack B. Environ. Sci. Technol., 2009, 43, 9216–9222.

Miao L., Wang C., Hou J., Wang P., Ao Y., Li Y., You G. Bioresour. Technol., 2016, 216, 537–544.

Madeła M. Desalination Water Treat., 2020, 199, 493–498.

Crisan MC., Teodora M., Lucian M. Appl. Sci., 2022, 12, 141. https://doi.org/10.3390/app12010141,

Hona S., Dangol R., Ghatane J., Giri D., Pradhananga RR. Int. J. Appl. Sci. Biotechnol., 2019, 7, 421–428.

Dhas NA., Raj CP., Gedanken A. Chem. Mater., 1998, 10,1446–1452

Dlamini NG., Basson AK., Pullabhotla VSR. Processes, 2020, 8, 1125; doi:10.3390/pr8091125

Wang Q., del Valle M. Chemosensors, 2021, 9, 46.

Dlamini NG., Basson AK., Pullabhotla VSR. Int. J. Environ. Res. Public Health, 2019, 16, 2185. https://doi.org/10.3390/ijerph16122185

Buthelezi SP., Olaniran AO., Pillay B. Molecules, 2012, 17, 14260–14274.

Jain S, Mehata MS. Scientific Reports, 2017, 7, article 15867.

Ananda Murthy HC., Desalegn T., Kassa M., Abebe B., Assefa T. J. Nanomat., 2020, Article ID 3924081, 12 pages https://doi.org/10.1155/2020/3924081.

Salehizadeh H., Shojaosadati S. Biotechnol. Adv., 2001, 19, 371–385.

Deng S., Yu G., Ting YP. Colloids Surf. B Biointerfaces., 2005, 44, 179–186.