Biosynthesis of Zinc oxide Nanoparticles using Barringtonia acutangula Flower Extract and Evaluation of their Antibacterial and Antioxidant Activities

Main Article Content

Namrata Jain
S.Chandra Mohan
S. Krishnaveni

Abstract

Zinc oxide (ZnO) has broad applications in various areas. Nanoparticle synthesis using plants is an alternative to conventional physical and chemical methods. It is known that the biological synthesis of nanoparticles is gaining importance due to its simplicity, eco-friendliness and extensive antimicrobial activity. Also, in this study we report the synthesis of ZnO nanoparticles (ZnONPs) using Barringtonia acutangula   flower extract. The prepared ZnO nanoparticles have been characterized by UV–Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM)). The antioxidant activity of the nanoparticles was tested by the α-diphenyl-β-picrylhydrazyl (DPPH) method. Antibacterial properties of the synthesized ZnONPs were evaluated against Staphylococcus aureus and Escherichia coli by disc diffusion method,

Downloads

Download data is not yet available.

Article Details

How to Cite
Namrata Jain, S.Chandra Mohan, & S. Krishnaveni. (2024). Biosynthesis of Zinc oxide Nanoparticles using Barringtonia acutangula Flower Extract and Evaluation of their Antibacterial and Antioxidant Activities. Journal of Advanced Zoology, 45(1), 437–444. https://doi.org/10.53555/jaz.v45i1.3305
Section
Articles
Author Biographies

Namrata Jain

Department of Chemistry, Sarvepalli Radhakrishnan University, NH-12, Hoshangabad Road, Jatkhedi, Bhopal- 462026, Madhya Pradesh, India

S.Chandra Mohan

Department of Chemistry, Sarvepalli Radhakrishnan University, NH-12, Hoshangabad Road, Jatkhedi, Bhopal- 462026, Madhya Pradesh, India

S. Krishnaveni

Krishnaveni, Department of Chemistry, St. Joseph’s College of Engineering and Technology , Elupatti, Thanjavur – 613 03, Tamil Nadu, India

References

P. Ramesh, A. Rajendran, M. Meenakshisundaram. Green synthesis of zinc oxide nanoparticles using flower extract Cassia Auriculata. J NS NT, 1 (1) (2014), pp. 41-45

J. Rouhi, S. Mahmud, N. Naderi, C.R. Ooi, M.R. Mahmood. Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods. Nanoscale Res. Lett., 8 (2013), p. 364

G. Sangeetha, S. Rajeshwari, R. Venckatesh. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater. Res. Bull., 46 (2011), pp. 2560-2566

T.V. Kolekar, S.S. Bandgar, S.S. Shirguppikar, V.S. Ganachari. Synthesis and characterization of ZnO nanoparticles for efficient gas sensors. Arch. Appl. Sci. Res., 5 (6) (2013), pp. 20-28

S. Gunalan, R. Sivaraj, V. Rajendran. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci. Mater. Int., 22 (6) (2012), pp. 693-700

A. Mahanty, S. Mishra, R. Bosu, U.K. Maurya, S.P. Netam, B. Sarkar. Phytoextracts-synthesized silver nanoparticles inhibit bacterial fish pathogen Aeromonas hydrophila. Indian J. Microbiol., 53 (4) (2013), pp. 438-446

S. Divyapriya, C. Sowmia, S. Sasikala. Synthesis of zinc oxide nanoparticles and antimicrobial activity of Murraya Koenigii. World J. Pharm. Pharm. Sci., 3 (12) (2014), pp. 1635-1645

S.K. Jain. Dictionary of Indian folkmedicine and ethanobotany, National Botanical Research Institute, Lucknow, India, 33 (1991).

T.A. Sahoo. Antibacterial activity of Barringtonia acutangula Linn. against selected urinary tract pathogens. Ind. J. Pharm. Sci., 70 (2008), pp.677-680.

A. Mohan, R. Sasikumar. Antioxidant, antimicrobial studies and investigation of secondary metabolites from stem bark of Barringtonia acutangula (L.), Int. J. Pharmacog. Phytochem. Res., 6 (2014), pp. 967-972.

A. Kathirvel, V. Sujatha. Phytochemical analysis and antioxidant activity of Barringtonia acutangula (L.) Gaertn. leaves. Int J Pharm Pharm Sci., 4 (2012), pp. 277-281.

N. Thamizh Selvam , M.V. Acharya. A review on Barringtonia acutangula (L.) Gaertn: medicinal values, chemical characteristics and biological activities. Int. J. Innova. Drug Dis., 6 (2016), pp. 42-46.

C. Mills, A.R. Carroll, R.J. Quinn. Acutangulosides A-F, monodesmosidic saponins from the bark of Barringtonia acutangula. J. Nat. Prod., 68 (2005), pp. 311-318.

A.K. Barua, P. Chakrabarti, A.S.D. Gupta, S.K. Pal, A. Basak, S.K. Banerjee, K. Basu. The structure and stereochemistry of barrigenic acid, a new triterpene acid sapogenin from Barringtonia acutangula. Phytochem.,15 (1976), pp. 1780-1781.

M. Kaur, G. Singh, C. Mohan. Barringtonia acutangula: A Traditional Medicinal Plant, Int. J. Pharm. Sci. Rev. Res., 23 (2013), pp. 168-171.

V.D. Nguyen, T.L. Nguyen, H.T. Tran, T.A. Ha, V.H. Bui, H.N. Nguyen, T.D. Nguyen. Flavan-3-ols from the barks of Barringtonia acutangula. Biochem.Syst. Ecol., 55 (2014), pp. 219-221.

T.T.V. Quach, T.V. Le, T.H.H. Tran, T.T.H. Phan, V.T. Nguyen, X.C. Nguyen, H.N. Nguyen, V.M. Chau. Structural elucidation of four flavonoid glycosides from Barringtonia acutangula. Vietnam J. Chem., 56 (2018), pp. 187-190.

P. Jamdagni, P. Khatri, J.S. Rana . Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J. King. Saud. Univ. Sci. 30(2) (2016), pp. 168–175.

W.R. Salem, D.G. Leitner, F. Zingl, G. Schratter, R. Prassl, W. Goessler, J. Reidl, S. Schild. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int. J. Med. Microbiol. Suppl. 305(1) (2015), pp. 86–95.

S. Bhakya, S. Muthukrishnan, M. Sukumaran, M. Muthukumar. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci., 6(5) (2016), pp.755–766.

A.W. Bauer, W.M. Kirby, J.C. Sherris, M. Turck. Antibiotic susceptibility testing by a standardized single disk method. American J. Clin. Patho., 45 (1996), pp. 493-96.

A. Gupta, P. Srivastava, L. Bahadur, D.P. Amalnerkar, R. Chauhan. Comparison of physical and electrochemical properties of ZnO prepared via different surfactant-assisted precipitation routes. Appl. Nanosci. (2014), 10.1007/s13204-014-0379-1.

S.R. Senthilkumar, T. Sivakumar. Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZNO) nanoparticles and studies on their antimicrobial activities. Int. J. Pharm. Pharm. Sci., 6 (2014), pp. 461-465

R. Yuvakkumar, J. Suresh, B. Saravanakumar, A.J. Nathanaeld, S.I. Honga, Rajendran. Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 137 (2015), pp. 250-258

S. Talam, S.R. Karumuri, N. Gunnam . Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotech., 2012 (2012), pp. 1–6.

M.S. Ghamsari , S. Alamdari, D. Razzaghi, M.A. Pirlar. ZnO nanocrystals with narrow-band blue emission. J. Lumin., 205 (2019), pp. 508–518.

S. Alamdari, M. Sasani Ghamsari, C. Lee, W. Han, H.H. Park, M. Jafar Tafreshi, H. Afarideh, M.H. Majles Ara. Rreparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Appl. Sci., 10 (2020), pp. 3620.

L.K. Adams, D.Y. Lyon , P.J. Alvarez. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res., 40(19) (2006), pp. 3527–3532.

K. Kasemets, A. Ivask, H-C Dubourguier, A. Kahru. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. In Vitro., 23(6) (2009), pp. 1116–1122.

Li M, Zhu L, Lin D. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 2011;45(5):1977–1983.

J. Sawai , S. Shoji, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, H. Kojima. Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng., 86(5) (1998), pp. 521–522.

L. Zhang , Y. Ding, M. Povey, D. York. ZnO nanofluids—a potential antibacterial agent. Prog. Nat. Sci., 18(8) (2018), pp. 939–944.

M.J. Divya, C. Sowmia, K. Joona, K.P. Dhanya. Synthesis of zinc oxide nanoparticle from Hibiscus rosa-sinensis leaf extract and investigation of its antimicrobial activity. Res. J. Pharm. Biol. Chem., 4 (2) (2013), pp. 1137-1142.

G.K. Parashant, P.A. Prashant, B. Utpal, G. Manoj, B.M. Nagabhushana, S. Ananda, G.M. Krishnaiah, H.M. Sathyananda. In vitro antibacterial and cytotoxicity studies of ZnOnanopowders prepared by combustion assisted facile green synthesis. Karbala. Int. J. Mod. Sci., 1(2) (2015), 67–77.

B. Thomas , A. Arul Prasad, S. Mary Vithiya. Evaluation of antioxidant, antibacterial and photo catalytic effect of silver nanoparticles from methanolic extract of Coleus vettiveroids – an endemic species. J. Nanostruct. 8(2) (2018) 79–190.

M. Stan M, A. Popa, D. Toloman, T.D. Silipas, D.C. Vodnar. Antibacterial and antioxidant activities of ZnO nanoparticles synthesized using extracts of Allium sativum, Rosmarinus officinalis and Ocimum basilicum. Acta Metal. Sinica 29 (2016) 228–236.

T. Safawo, B. Sandeep, S. Pola , A. Tadesse. Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment. OpenNano 3 (2018) 56–63.

Most read articles by the same author(s)