Emerging Threats In Aquaculture: Bibliometric Analysis Of Aeromonas Sps. As An Emerging Pathogen

Main Article Content

Dr. Nupur Joshi
Dr. Geeta Bhandari
Dr Archna Dhasmana
Dr Vikash Singh Jadon
Sanjay Gupta

Abstract

The concern regarding emerging diseases in aquaculture has received considerable global interest. This research focuses on the recent emergence of Aeromonads as a possible zoonotic pathogen that can impact both human and aquatic organisms. Therefore, it is crucial to evaluate the current state of this issue. Bibliometric analysis is employed to evaluate the prevalence of Aeromonas in the field of aquaculture during the period spanning from 2004 to 2023. The investigation was performed with the VOSviewer software and the Dimension database. The present study investigates the patterns of publishing output and global collaboration throughout the last ten years. The results demonstrate a substantial and steady rise in the quantity of scholarly articles, accompanied by a noteworthy degree of collaboration among academics hailing from various nations.  This research investigates the global distribution of scholarly articles, with a specific emphasis on the countries of China and India, which have the highest levels of representation. The Chinese Academy of Fishery Science has attained the most substantial publication output among academic institutes. This study also examines the prominent academic journals, specifically Fish & Shellfish Immunology, Aquaculture, and Aquaculture Research, which serve as crucial platforms for the dissemination of scholarly information

Downloads

Download data is not yet available.

Article Details

How to Cite
Dr. Nupur Joshi, Dr. Geeta Bhandari, Dr Archna Dhasmana, Dr Vikash Singh Jadon, & Sanjay Gupta. (2023). Emerging Threats In Aquaculture: Bibliometric Analysis Of Aeromonas Sps. As An Emerging Pathogen. Journal of Advanced Zoology, 44(5), 343–356. https://doi.org/10.53555/jaz.v44i5.2881
Section
Articles
Author Biographies

Dr. Nupur Joshi

Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, 248016

Dr. Geeta Bhandari

Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand,

Dr Archna Dhasmana

Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand

Dr Vikash Singh Jadon

Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand,

Sanjay Gupta

Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand,

References

Arunkumar, M., LewisOscar, F., Thajuddin, N., Pugazhendhi, A., & Nithya, C. (2020). In vitro and in vivo biofilm forming Vibrio spp: A significant threat in aquaculture. Process Biochemistry, 94, 213–223. https://doi.org/10.1016/j.procbio.2020.04.029

Bartie, K. L., Ngo, T. P. H., Bekaert, M., Oanh, Đ. T. H., Hoare, R., Adams, A., & Desbois, A. P. (2023). Aeromonas hydrophila ST251 and Aeromonas dhakensis are major emerging pathogens of striped catfish in Vietnam. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1067235

Chen, W., & Gao, S. (2023). Current status of industrialized aquaculture in China: a review. Environmental Science and Pollution Research, 30(12), 32278–32287. https://doi.org/10.1007/s11356-023-25601-9

Chenia, H. Y., & Duma, S. T. (2016). Characterization of virulence, cell surface characteristics and biofilm-forming ability ofAeromonasspp. isolates from fish and sea water. Journal of Fish Diseases, 40(3), 339–350. https://doi.org/10.1111/jfd.12516

Dalsgaard, A. (1998). The occurrence of human pathogenic Vibrio spp. and Salmonella in aquaculture*. International Journal of Food Science & Technology, 33(2), 127–138. https://doi.org/10.1046/j.1365-2621.1998.3320127.x

Dawood, M. A., Koshio, S., Abdel-Daim, M. M., & Van Doan, H. (2018). Probiotic application for sustainable aquaculture. Reviews in Aquaculture, 11(3), 907–924. https://doi.org/10.1111/raq.12272

Defoirdt, T. (2013). Virulence mechanisms of bacterial aquaculture pathogens and antivirulence therapy for aquaculture. Reviews in Aquaculture, 6(2), 100–114. https://doi.org/10.1111/raq.12030

Dhasmana, A., Singh, L., & Malik, S. (2021). Smart Bio-Polymeric matrix for accelerated wound healing and tissue regeneration. Austin Journal of Biomedical Engineering, 6(1).

https://doi.org/10.26420/austinjbiomedeng.2021.1045

Dien, L. T., Ngo, T. P. H., Van Nguyen, T., Kayansamruaj, P., Salin, K. R., Mohan, C. V., Rodkhum, C., & Dong, H. T. (2022). Non‐antibiotic approaches to combat motile Aeromonas infections in aquaculture: Current state of knowledge and future perspectives. Reviews in Aquaculture, 15(1), 333–366. https://doi.org/10.1111/raq.12721

Duarte, J., Pereira, C., Moreirinha, C., Salvio, R., Lopes, A. I., Wang, D., & Almeida, A. (2018). New insights on phage efficacy to control Aeromonas salmonicida in aquaculture systems: An in vitro preliminary study. Aquaculture, 495, 970–982. https://doi.org/10.1016/j.aquaculture.2018.07.002

Duman, M., Mulet, M., Altun, S., Satıcıoğlu, İ. B., Özdemir, B., Ajmi, N., Lalucat, J., & García‐Valdés, E. (2021). The diversity of Pseudomonas species isolated from fish farms in Turkey. Aquaculture, 535, 736369. https://doi.org/10.1016/j.aquaculture.2021.736369

Ellul, R. M., Kalatzis, P. G., Frantzen, C., Haugland, G. T., Gulla, S., Colquhoun, D. J., Middelboe, M., Wergeland, H. I., & Rønneseth, A. (2021). Genomic Analysis of Pasteurella atlantica Provides Insight on Its Virulence Factors and Phylogeny and Highlights the Potential of Reverse Vaccinology in Aquaculture. Microorganisms, 9(6), 1215. https://doi.org/10.3390/microorganisms9061215

El‐Saadony, M. T., Alagawany, M., Patra, A. K., Kar, I., Tiwari, R., Dawood, M. A., Dhama, K., & Abdel‐Latif, H. M. (2021). The functionality of probiotics in aquaculture: An overview. Fish & Shellfish Immunology, 117, 36–52. https://doi.org/10.1016/j.fsi.2021.07.007

Fečkaninová, A., Koščová, J., Mudroňová, D., Popelka, P., & Toropilová, J. (2017). The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture. Aquaculture, 469, 1–8. https://doi.org/10.1016/j.aquaculture.2016.11.042

Gatta, P. P. (2022). The State of World Fisheries and Aquaculture 2022. In FAO eBooks.

https://doi.org/10.4060/cc0461en

Gołaś, I., Szmyt, M., Potorski, J., Łopata, M., Gotkowska-Płachta, A., & Glińska-Lewczuk, K. (2019). Distribution of Pseudomonas fluorescens and Aeromonas hydrophila Bacteria in a Recirculating Aquaculture System during Farming of European Grayling (Thymallus thymallus L.) Broodstock. Water, 11(2), 376. https://doi.org/10.3390/w11020376

Govindaraj, K., Samayanpaulraj, V., Vidhyalakshmi, N., & Ramesh, U. (2021). Isolation of Lactic Acid Bacteria from Intestine of Freshwater Fishes and Elucidation of Probiotic Potential for Aquaculture Application. Probiotics and Antimicrobial Proteins, 13(6), 1598–1610. https://doi.org/10.1007/s12602-021-09811-6

Grillo, R. (2021). Orthognathic Surgery: A bibliometric analysis of the top 100 cited articles. Journal of Oral and Maxillofacial Surgery, 79(11), 2339–2349. https://doi.org/10.1016/j.joms.2021.06.004

Hamed, S. B., Ranzani-Paiva, M. J. T., Tachibana, L., De Carla Dias, D., Ishikawa, C. M., & Esteban, M. Á. (2018). Fish pathogen bacteria: Adhesion, parameters influencing virulence and interaction with host cells. Fish & Shellfish Immunology, 80, 550–562. https://doi.org/10.1016/j.fsi.2018.06.053

Hernández-Contreras, A., & Hernández, M. J. (2020). Application of aromatic plants and their extracts in aquaculture. In Elsevier eBooks (pp. 239–259). https://doi.org/10.1016/b978-0-12-814700-9.00014-5

Hu, X., Tang, Y., Lu, F., Luo, Y., Yang, P., Wang, W., Jiang, J., Li, N., Han, Q. X., Liu, F., & Liu, L. (2017). The effect of Aeromonas hydrophila infection on the non-specific immunity of blunt snout bream (Megalobrama amblycephala ). Central European Journal of Immunology, 3, 239–243.

https://doi.org/10.5114/ceji.2017.70965

Huang, T., Wu, H., Yang, S. H., Su, B., Tang, K., Quan, Z., Zhong, W., & Luο, X. (2020). Global Trends of Researches on Sacral Fracture Surgery. Spine, 45(12), E721–E728.

https://doi.org/10.1097/brs.0000000000003381

Igbinosa, I. H., Beshiru, A., Odjadjare, E. E., Ateba, C. N., & Igbinosa, E. O. (2017). Pathogenic potentials of Aeromonas species isolated from aquaculture and abattoir environments. Microbial Pathogenesis, 107, 185–192. https://doi.org/10.1016/j.micpath.2017.03.037

Jacobs, L., & Chenia, H. Y. (2007). Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems. International Journal of Food Microbiology, 114(3), 295–306. https://doi.org/10.1016/j.ijfoodmicro.2006.09.030

Joseph, A. V., Sasidharan, R. S., Nair, H. P., & Bhat, S. G. (2013). Occurrence of potential pathogenic Aeromonas species in tropical seafood, aquafarms and mangroves off Cochin coast in South India. Veterinary World, 6(6), 3000. https://doi.org/10.5455/vetworld.2013.300-306

Liang, D., De Jong, M., Schraven, D., & Wang, L. (2021). Mapping key features and dimensions of the inclusive city: A systematic bibliometric analysis and literature study. International Journal of Sustainable Development and World Ecology, 29(1), 60–79. https://doi.org/10.1080/13504509.2021.1911873

Liu, X., Sun, W., Jian, S., Cao, J., Chen, C., Chen, C., Chen, R., & Ding, R. (2022). Passive protective ability of the outer membrane protein PF1380 of Pseudomonas fluorescens against the major pathogenic bacteria of freshwater aquaculture in fish. Aquaculture Reports, 22, 100985.

https://doi.org/10.1016/j.aqrep.2021.100985

Maekawa, S., Wang, P. C., & Chen, S. C. (2019). Comparative study of immune reaction against bacterial infection from transcriptome analysis. Frontiers in Immunology, 10.

https://doi.org/10.3389/fimmu.2019.00153

Mallik, S. K., Joshi, N., Shahi, N., Kala, K., Singh, S., Giri, A. K., Pant, K., & Chandra, S. (2020). Characterization and pathogenicity of Aeromonas veronii associated with mortality in cage farmed grass carp, Ctenopharyngodon idella (Valenciennes, 1844) from the Central Himalayan region of India. Antonie Van Leeuwenhoek, 113(12), 2063–2076. https://doi.org/10.1007/s10482-020-01478-3

Nayak, S. (2020). Multifaceted applications of probiotic Bacillus species in aquaculture with special reference to Bacillus subtilis. Reviews in Aquaculture, 13(2), 862–906. https://doi.org/10.1111/raq.12503

Nhinh, D. T., Le, D. V., Van Van, K., Giang, N. T. H., Dang, L. T., & Hoai, T. D. (2021). Prevalence, Virulence Gene Distribution and Alarming the Multidrug Resistance of Aeromonas hydrophila Associated with Disease Outbreaks in Freshwater Aquaculture. Antibiotics, 10(5), 532.

https://doi.org/10.3390/antibiotics10050532

Nithya, C., LewisOscar, F., MubarakAli, D., Ali, A. S., & Thajuddin, N. (2017). In vitro and in vivo antibiofilm effect of copper nanoparticles against aquaculture pathogens. Biocatalysis and Agricultural Biotechnology, 10, 336–341. https://doi.org/10.1016/j.bcab.2017.04.013

O’Leary, D. E. (2021). RECENT RESEARCH TOPICS AND A BIBLIOMETRIC ANALYSIS OF JOCEC. Journal of Organizational Computing and Electronic Commerce, 31(1), 78–91.

https://doi.org/10.1080/10919392.2021.1885875

Oyewola, D. O., & Dada, E. G. (2022). Exploring machine learning: a scientometrics approach using bibliometrix and VOSviewer. SN Applied Sciences, 4(5). https://doi.org/10.1007/s42452-022-05027-7

Park, S., Han, J. E., Kwon, H., Park, T., & Kim, J. H. (2020). Recent Insights into Aeromonas salmonicida and Its Bacteriophages in Aquaculture: A Comprehensive Review. Journal of Microbiology and Biotechnology, 30(10), 1443–1457. https://doi.org/10.4014/jmb.2005.05040

Pessoa, R. B. G., Marques, D. B., Lima, R., De Oliveira, M. B. M., Lima, G. M. S., De Carvalho, E. V. M. M., & Coelho, L. C. B. B. (2020). Molecular characterization and evaluation of virulence traits of Aeromonas spp. isolated from the tambaqui fish (Colossoma macropomum). Microbial Pathogenesis, 147, 104273. https://doi.org/10.1016/j.micpath.2020.104273

Reverter, M., Bontemps, N., Lecchini, D., Banaigs, B., & Sasal, P. (2014). Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture, 433, 50–61. https://doi.org/10.1016/j.aquaculture.2014.05.048

Richards, G. P. (2014). Bacteriophage remediation of bacterial pathogens in aquaculture: a review of the technology. Bacteriophage, 4(4), e975540. https://doi.org/10.4161/21597081.2014.975540

Ringø, E., Schillinger, U., & Holzapfel, W. H. (2005). Chapter 18 Antimicrobial activity of lactic acid bacteria isolated from aquatic animals and the use of lactic acid bacteria in aquaculture. In Biology of growing animals (pp. 418–453). https://doi.org/10.1016/s1877-1823(09)70051-7

Rodkhum, C., Hirono, I., Crosa, J. H., & Aoki, T. (2005). Four novel hemolysin genes of Vibrio anguillarum and their virulence to rainbow trout. Microbial Pathogenesis, 39(4), 109–119. https://doi.org/10.1016/j.micpath.2005.06.004

Sakai, T., Matsuyama, T., Sano, M., & Iida, T. (2009). Identification of novel putative virulence factors, adhesin AIDA and type VI secretion system, in atypical strains of fish pathogenic Edwardsiella tarda by genomic subtractive hybridization. Microbiology and Immunology, 53(3), 131–139.

https://doi.org/10.1111/j.1348-0421.2009.00108.x

Sarkar, P., Issac, P. K., Raju, S. V., Elumalai, P., Arshad, A., & Arockiaraj, J. (2021). Pathogenic bacterial toxins and virulence influences in cultivable fish. Aquaculture Research, 52(6), 2361–2376. https://doi.org/10.1111/are.15089

Shahi, N., Mallik, S. K., Kala, K., Joshi, N., Patiyal, R. S., Chandra, S., Singh, S., & Sarma, D. (2020). Seasonal emergence of benign epidermal tumor in farm-reared adult grass carp (Ctenopharyngodon idella) caused by lymphocystis disease virus at Uttarakhand, India. Aquaculture, 526, 735408. https://doi.org/10.1016/j.aquaculture.2020.735408

Sheikh, H. I., John, A., Musa, N., Abdulrazzak, L., Alfatama, M., & Fadhlina, A. (2022). Vibrio spp. and Their Vibriocin as a Vibriosis Control Measure in Aquaculture. Applied Biochemistry and Biotechnology, 194(10), 4477–4491. https://doi.org/10.1007/s12010-022-03919-3

Soltani, M., Baldisserotto, B., Shekarabi, S. P. H., Shafiei, S., & Bashiri, M. (2021). Lactococcosis A Re-Emerging Disease in Aquaculture: Disease significant and phytotherapy. Veterinary Sciences, 8(9), 181. https://doi.org/10.3390/vetsci8090181

Swain, P., Nayak, S., Sasmal, A., Behera, T., Barik, S. K., Swain, S. K., Mishra, S., Sen, A. K., Das, J., & Jayasankar, P. (2014). Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture. World Journal of Microbiology & Biotechnology, 30(9), 2491–2502. https://doi.org/10.1007/s11274-014-1674-4

Tamala, J. K., Maramag, E., Simeon, K. A., & Ignacio, J. J. (2022). A bibliometric analysis of sustainable oil and gas production research using VOSviewer. Cleaner Engineering and Technology, 7, 100437. https://doi.org/10.1016/j.clet.2022.100437

To, W. M. (2022). A Bibliometric analysis of World Issues—Social, political, economic, and environmental dimensions. World, 3(3), 619–638. https://doi.org/10.3390/world3030034

Uysal, Ö. (2009). Business Ethics Research with an Accounting Focus: A Bibliometric Analysis from 1988 to 2007. Journal of Business Ethics, 93(1), 137–160. https://doi.org/10.1007/s10551-009-0187-9

Van Hai, N. (2015). The use of medicinal plants as immunostimulants in aquaculture: A review. Aquaculture, 446, 88–96. https://doi.org/10.1016/j.aquaculture.2015.03.014

Zhang, W., & Li, C. (2021). Virulence mechanisms of vibrios belonging to the Splendidus clade as aquaculture pathogens, from case studies and genome data. Reviews in Aquaculture, 13(4), 2004–2026. https://doi.org/10.1111/raq.12555

Zhang, X., He, X., & Austin, B. (2020). Vibrio harveyi: a serious pathogen of fish and invertebrates in mariculture. Marine Life Science & Technology, 2(3), 231–245. https://doi.org/10.1007/s42995-020-00037-z

Zhao, J., Chen, M., Cs, Q., & Fan, S. (2014). Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens. Journal of Fish Diseases, 38(9), 771–786. https://doi.org/10.1111/jfd.12299

Zhao, Y., Wang, Y., Song, L., Li, S., Chen, X., Tang, S., & Zhao, J. (2022). Effects of chronic alkalinity stress on immune response in Nile tilapia (Oreochromis niloticus) infected with Aeromonas hydrophila. Aquaculture, 561, 738599. https://doi.org/10.1016/j.aquaculture.2022.738599

Zhu, S., Liu, Y., Gu, Z., & Zhao, Y. (2022). Research trends in biomedical applications of two-dimensional nanomaterials over the last decade – A bibliometric analysis. Advanced Drug Delivery Reviews, 188, 114420. https://doi.org/10.1016/j.addr.2022.114420

Most read articles by the same author(s)