Murraya Paniculata Mediated Synthesis Of CdS Nanoparticles For Potent Biomedical Applications

Main Article Content

D. Adinarayana
N. Annapurna
G. Pavan Kumar
Paul Douglas

Abstract

The leaf extract of Murraya paniculata (MPL) is used to create cadmium sulphide nanoparticles, or CdS NPs and the reducing and stabilizing agent is plant extract. A crucial capping agent in nano production is played by phytochemicals. Analytical methods such as


XRD and FTIR are used to characterize CdS NPs. The biomedical applications of prepared CdS NPs were examined, including their anticancer, antifungal, and antibacterial properties. The antibacterial performance was carried out with S.flexneri, C.perfringens, S.typhimurium, and E.faecalis which were all susceptible to the antibacterial action of CdS NPs. At 150µg/ml, S.flexneri and E.faecalis showed a maximum zone of inhibition is 20mm. In addition, A.niger and C.albicans were used to test the antifungal activities, results shows the concentration of 400 µg/ml CdS NPs inhibited the growth of A.flavus (16mm). By using the NRU assay, it was found that the biosynthesized CdS NPs exhibited cytotoxic action against the MCF-7 cell line. Analysis using the NRU assay revealed that treating cell lines with increasing concentrations of NPs had lethal effects. The 24-hour treatment's IC50 was found to be 153.2 µg/ml.

Downloads

Download data is not yet available.

Article Details

How to Cite
D. Adinarayana, N. Annapurna, G. Pavan Kumar, & Paul Douglas. (2023). Murraya Paniculata Mediated Synthesis Of CdS Nanoparticles For Potent Biomedical Applications. Journal of Advanced Zoology, 44(S6), 430–436. https://doi.org/10.53555/jaz.v44iS6.2210
Section
Articles
Author Biographies

D. Adinarayana

Department of Chemistry, Govt. Degree College (Men), Srikakulam 532001, A.P., India

N. Annapurna

Department of Engineering Chemistry, AU College of Engineering (A), Visakhapatnam, 530003, A.P., India

G. Pavan Kumar

Bio Enviro Chemical Solutions, Visakhapatnam-530017, India

Paul Douglas

Department of Engineering Chemistry, AU College of Engineering (A), Visakhapatnam 530003, A.P., India

References

Botsa, S.M., Basavaiah, K. Fabrication of multifunctional TANI/Cu2O/Ag nanocomposite for environmental abatement. Sci Rep 10, 14080 (2020).

https://doi.org/10.1038/s41598-020-70194-9

Mansoori GA: Principles of nanotechnology- Molecularbased study of condensed matter in small systems, 1st edition World Scientific Pub Co., Hackensack, USA, 2005: 147-66.

Li L and Zhang Z: Biosynthesis of gold nanoparticles using green alga Pithophora oedogonia with their electrochemical performance for determining carbendazim in the soil. International Journal of Electrochemical Science 2016; 11: 4550-59.

Singh R and Singh NH: Medical application of nanoparticles in biological imaging, cell labeling, antimicrobial agents and anticancer nanodrugs. Journal of Biomedical Nanotechnology 2011; 7: 489-03.

Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L and Zhang Q: Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry 2007; 9: 852-58.

Ealia, S.A.M.; Saravanakumar, M.P. A Review on the Classification, Characterisation, Synthesis of Nanoparticles and Their Application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 032019.

Saqib, S.; Faryad, S.; Afridi, M.I.; Arshad, B.; Younas, M.; Naeem, M.; Zaman, W.; Ullah, F.; Nisar, M.; Ali, S.; et al. Bimetallic Assembled Silver Nanoparticles Impregnated in Aspergillus Fumigatus Extract Damage the Bacterial Membrane Surface and Release Cellular Contents. Coatings 2022, 12, 1505.

Titus, D.; James Jebaseelan Samuel, E.; Roopan, S.M. Chapter 12—Nanoparticle Characterization Techniques. In Green. Synthesis, Characterization and Applications of Nanoparticles; Shukla, A.K., Iravani, S., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 303–319. ISBN 978-0-08-102579-6.

Dehghan, H.; Sedighi, M.; Jafari-Nozad, A.M.; Jafari, S.; Alemzadeh, E.; Farkhondeh, T.; Samarghandian, S. Gold Nanoparticles and Wound Healing in Rodents: A Systematic Study. Curr. Nanosci. 2023, 19, 1–10.

Zheng, X.; Liu, Y.; Yang, Y.; Song, Y.; Deng, P.; Li, J.; Liu, W.; Shen, Y.; Tian, X. Recent Advances in Cadmium Sulfide-Based Photocatalysts for Photocatalytic Hydrogen Evolution. Renewables 2023, 1, 39–56.

Dabhane, H.; Ghotekar, S.; Tambade, P.; Pansambal, S.; Murthy, H.A.; Oza, R.; Medhane, V. A Review on Environmentally Benevolent Synthesis of CdS Nanoparticle and Their Applications. Environ. Chem. Ecotoxicol. 2021, 3, 209–219.

Peana, M.; Pelucelli, A.; Chasapis, C.T.; Perlepes, S.P.; Bekiari, V.; Medici, S.; Zoroddu, M.A. Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules 2023, 13, 36.

Suhani, I.; Sahab, S.; Srivastava, V.; Singh, R.P. Impact of Cadmium Pollution on Food Safety and Human Health. Curr. Opin. Toxicol. 2021, 27, 1–7.

Huang, M.; Liu, C.; Cui, P.; Wu, T.; Feng, X.; Huang, H.; Zhou, J.; Wang, Y. Facet-

Dependent Photoinduced Transformation of Cadmium Sulfide (CdS) Nanoparticles. Environ. Sci. Technol. 2021, 55, 13132–13141.

Qin, Z.; Yue, Q.; Liang, Y.; Zhang, J.; Zhou, L.; Hidalgo, O.B.; Liu, X. Extracellular Biosynthesis of Biocompatible Cadmium Sulfide Quantum Dots Using Trametes Versicolor. J. Biotechnol. 2018, 284, 52–56.

Wu, Q.; Huang, L.; Li, Z.; An, W.; Liu, D.; Lin, J.; Tian, L.; Wang, X.; Liu, B.; Qi, W.; et al. The Potential Application of Raw Cadmium Sulfide Nanoparticles as CT Photographic Developer. Nanoscale Res. Lett. 2016, 11, 232.

Varmazyari, A.; Baris, O. Rapid Biosynthesis of Cadmium Sulfide (CdS) Nanoparticles Using Culture Supernatants of Viridibacillus Arenosi K64. BioNanoSci. 2022, 12, 191– 202.

Shakibaie, M.; Riahi-Madvar, S.; Ameri, A.; Amiri-Moghadam, P.; Adeli-Sardou, M.; Forootanfar, H. Microwave Assisted Biosynthesis of Cadmium Nanoparticles: Characterization, Antioxidant and Cytotoxicity Studies. J. Clust. Sci. 2022, 33, 1877– 1887.

Shivashankarappa, A.; Sanjay, K.R. Escherichia Coli-Based Synthesis of Cadmium Sulfide Nanoparticles, Characterization, Antimicrobial and Cytotoxicity Studies. Braz. J. Microbiol. 2020, 51, 939–948.

Jameel, M.; Rauf, M.A.; Khan, M.T.; Farooqi, M.K.; Alam, M.A.; Mashkoor, F.; Shoeb, M.; Jeong, C. Ingestion and Effects of Green Synthesized Cadmium Sulphide Nanoparticle on Spodoptera Litura as an Insecticidal and Their Antimicrobial and Anticancer Activities. Pestic. Biochem. Physiol. 2023, 190, 105332.

Harish, R.; Nisha, K.D.; Prabakaran, S.; Sridevi, B.; Harish, S.; Navaneethan, M.; Ponnusamy, S.; Hayakawa, Y.; Vinniee, C.; Ganesh, M.R. Cytotoxicity Assessment of Chitosan Coated CdS Nanoparticles for Bio-Imaging Applications. Appl. Surf. Sci. 2020, 499, 143817.

Perez C, Pauli M, Bazevque P. An antibiotic assay by the agar well diffusion method. Acta Biologiae et Medicine Experimentalis. 1990; 15:113–115.

Bhatnagar A and Abha M. Biogenic Synthesis of Cadmium Sulfide nanoparticles using Daruharidra (Berberis aristata) and Its implementation as a novel therapeutic agent against Human Breast and Ovarian Cancer. 2019, 7(2), 1-7.

Ijaz, Irfan, Ezaz Gilani, Ammara Nazir, Aysha Bukhari, and Jahanzaib Ahmad Ansari. Green Synthesis, Characterization and Antibacterial Activity of Cadmium Oxide Nanoparticles Using Calendula Officinali’S Plant. No. 2453. EasyChair, 2020.

He L., Liu Y., Mustapha A., and Lin M., “Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum”, Microbiological Research., 166(3). 207-215. Mar. 2011.

Alvarez-Peral F J., Zaragoza O., Pedreno Y., and Arguelles J C., “Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans”, Microbiology., 148. 2599-2606. Aug. 2002.

Kim K J., Sung W S., Suh B K., Moon S K., Choi J S., Kim J G., and Lee D G., “Antifungal activity and mode of action of silver nano-particles on Candida albicans”, Biometals., 22(2). 235-242. Apr. 2009

Kim K J., Sung W S., Moon S K., Choi J S., Kim J G., and Lee D G., “Antifungal activity of silver nanoparticles on dermatophytes”, Journal of Microbiology and Biotechnology., 18(8). 1482-1484. Apr. 2008.