"Comparative Analysis of Linker Design in Protein Fusion Inhibitors for Enhanced Binding Flexibility"

Authors

  • Mohan Kumar B. S. Department of Zoology, Maharani Cluster University, Bengaluru-560001, Karnataka, India
  • Sethupathi Raj S. Department of Biochemistry and Molecular biology, Pondicherry University, Pondicherry-605014, India
  • Kumar Department of Zoology, Government First Grade College of Arts, Science and Commerce, Sira-572137, Bengaluru-560001, Karnataka, India
  • Shalini K.S. Department of Chemistry, Maharani Cluster University, Bengaluru-560001, Karnataka, India
  • V. N. Narasimha Murthy
  • Rudresh Kumar K.J. Department of Chemistry, RV Institute of Technology and Management, Bengaluru-560076, Karnataka, India

DOI:

https://doi.org/10.53555/jaz.v44i2.5044

Keywords:

GGGS linkers, Happy_06, fusion proteins, linker length, molecular dynamics.

Abstract

This study investigates the impact of linker length on the flexibility and binding efficiency of protein fusion inhibitors targeting viral proteins. Fusion proteins play a critical role in developing antiviral therapeutics, and the design of peptide linkers is crucial in optimizing their performance. We designed a series of fusion proteins, ranging from Happy_00 (no linker) to Happy_10 (ten GGGS linkers), to analyze how varying linker lengths influence binding stability and flexibility. Molecular docking simulations provided insights into binding energies, revealing that Happy_06, with six GGGS linkers, exhibited enhanced binding affinity due to increased flexibility at the target site. Structural analyses, including Ramachandran plots, indicated favorable conformational stability for Happy_06 compared to Happy_00. Solvent accessibility assessments demonstrated that longer linkers improve the protein's ability to interact with deeper or more complex binding sites. The findings suggest that optimizing linker design is essential for improving the efficacy of protein fusion inhibitors, particularly in targeting secondary cleavage sites in viral proteins. This study contributes to a better understanding of protein fusion design, paving the way for the development of more effective antiviral therapeutics.

Downloads

Download data is not yet available.

Author Biography

V. N. Narasimha Murthy

Department of Physics, Maharani Cluster University, Bengaluru-560001, Karnataka, India

References

1. Baughn, L. B., Sharma, N., Elhaik, E., Sekulic, A., Bryce, A. H., & Fonseca, R. (2020). Targeting TMPRSS2 in SARS-CoV-2 Infection. Mayo Clinic Proceedings, 95(9), 1989–1999. https://doi.org/https://doi.org/10.1016/j.mayocp.2020.06.018

2. Cao, W., Feng, Q., & Wang, X. (2021). Computational analysis of TMPRSS2 expression in normal and SARS-CoV-2-infected human tissues. Chemico-Biological Interactions, 346, 109583. https://doi.org/https://doi.org/10.1016/j.cbi.2021.109583

3. Choi, H., Park, H., Son, K., Kim, H. M., & Jung, Y. (2019a). Fabrication of rigidity and space variable protein oligomers with two peptide linkers. Chemical Science, 10(44), 10428–10435.

4. Choi, H., Park, H., Son, K., Kim, H. M., & Jung, Y. (2019b). Fabrication of rigidity and space variable protein oligomers with two peptide linkers. Chemical Science, 10(44), 10428–10435. https://doi.org/10.1039/c9sc04158c

5. Dominguez, C., Boelens, R., & Bonvin, A. M. J. J. (2003). HADDOCK: A Protein−Protein Docking Approach Based on Biochemical or Biophysical Information. Journal of the American Chemical Society, 125(7), 1731–1737. https://doi.org/10.1021/ja026939x

6. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., & Nitsche, A. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.

7. Jackson, C. B., Farzan, M., Chen, B., & Choe, H. (2022). Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology, 23(1), 3–20.

8. Lan, Q., Wang, C., Zhou, J., Wang, L., Jiao, F., Zhang, Y., Cai, Y., Lu, L., Xia, S., & Jiang, S. (2021). 25-Hydroxycholesterol-conjugated EK1 peptide with potent and broad-spectrum inhibitory activity against SARS-CoV-2, its variants of concern, and other human coronaviruses. International Journal of Molecular Sciences, 22(21), 11869.

9. Masako, A., Maino, T., Kouji, S., Hiromi, Y., Kazuhiko, K., Kazuya, S., Miyuki, K., Masahiro, N., Hirokazu, K., Shutoku, M., Hideo, F., Katsumi, M., Katsumi, M., Yasushi, A., Mariko, E., Atsushi, K., & Makoto, T. (2013). TMPRSS2 Is an Activating Protease for Respiratory Parainfluenza Viruses. Journal of Virology, 87(21), 11930–11935. https://doi.org/10.1128/jvi.01490-13

10. D’mello, D., Shivasharanappa, K., Hanchinalmath, J.V., & Patil, S.J. (2022). In silico approaches in drug discovery for SARS-CoV-2. Corona Virus Drug Discovery: Druggable Targets and in Silico Update. Elsevier Publishers, p: 235-252.

11. Mohan Kumar B. S., Sethupathi Raj S, Kumar, Shalini K. S, Narasimha Murthy V. N, & Rudresh Kumar K.J. (2023). In Silico Design of Tetanus Toxoid-Derived Fusion Peptides as Antiviral Therapeutics. Revista Electronica de Veterinaria, 24(1), 150–156. https://doi.org/10.69980/redvet.v24i1.1330

12. Sahin, U., Karikó, K., & Türeci, Ö. (2014). mRNA-based therapeutics—developing a new class of drugs. Nature Reviews Drug Discovery, 13(10), 759–780.

13. Silacci, M., Baenziger-Tobler, N., Lembke, W., Zha, W., Batey, S., Bertschinger, J., & Grabulovski, D. (2014). Linker Length Matters, Fynomer-Fc Fusion with an Optimized Linker Displaying Picomolar IL-17A Inhibition Potency. Journal of Biological Chemistry, 289(20), 14392–14398. https://doi.org/10.1074/jbc.M113.534578

14. Valdes-Balbin, Y., Santana-Mederos, D., Quintero, L., Fernández, S., Rodriguez, L., Sanchez Ramirez, B., Perez-Nicado, R., Acosta, C., Méndez, Y., Ricardo, M. G., Hernandez, T., Bergado, G., Pi, F., Valdes, A., Carmenate, T., Ramirez, U., Oliva, R., Soubal, J.-P., Garrido, R., … Verez Bencomo, V. (2021). SARS-CoV-2 RBD-Tetanus Toxoid Conjugate Vaccine Induces a Strong Neutralizing Immunity in Preclinical Studies. ACS Chemical Biology, 16(7), 1223–1233. https://doi.org/10.1021/acschembio.1c00272

15. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/https://doi.org/10.1002/jcc.20291

16. van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/https://doi.org/10.1016/j.jmb.2015.09.014

17. Vangone, A., & Bonvin, A. M. J. J. (2017). PRODIGY: a contact-based predictor of binding affinity in protein-protein complexes. Bio-Protocol, 7(3), e2124–e2124.

18. Vangone, A., Spinelli, R., Scarano, V., Cavallo, L., & Oliva, R. (2011). COCOMAPS: a web application to analyze and visualize contacts at the interface of biomolecular complexes. Bioinformatics, 27(20), 2915–2916. https://doi.org/10.1093/bioinformatics/btr484

19. Wang, K., Chen, W., Zhang, Z., Deng, Y., Lian, J.-Q., Du, P., Wei, D., Zhang, Y., Sun, X.-X., Gong, L., Yang, X., He, L., Zhang, L., Yang, Z., Geng, J.-J., Chen, R., Zhang, H., Wang, B., Zhu, Y.-M., … Chen, Z.-N. (2020). CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduction and Targeted Therapy, 5(1), 283. https://doi.org/10.1038/s41392-020-00426-x

20. Wang, S., Sun, S., & Xu, J. (2018). Analysis of deep learning methods for blind protein contact prediction in CASP12. Proteins: Structure, Function, and Bioinformatics, 86(S1), 67–77. https://doi.org/https://doi.org/10.1002/prot.25377

21. Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall III, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Science, 27(1), 293–315. https://doi.org/https://doi.org/10.1002/pro.3330

22. Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C.-L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507

Downloads

Published

2023-04-25

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.