Effect Of Supplementation Of Β-Galacto-Oligosaccharide And Probiotic Mixture On Growth Performance Of Physiologically Stressed Rabbits
DOI:
https://doi.org/10.53555/jaz.v45i6.5023Keywords:
β-galacto oligosaccharidrobiotic, Stressed RabbitsAbstract
This study explored the effects of prebiotic β-Galacto-oligosaccharide (β-GOS) and probiotic supplementation as a nutritional strategy to mitigate stress-induced impacts on growth performance in rabbits. Twenty male rabbits were randomly assigned to four groups: A (negative control, no stress), B (positive control, Dexa-stressed 15 mg/kg [D-S 15], C (D-S 15 + probiotic mixture), and D (D-S 15 + 0.2% β-GOS). Initial body weight did not differ significantly (P > 0.05) among the groups. However, a significant difference (P < 0.05) in weekly body weight was observed from weeks 1 to 12. Body weight increased linearly across all groups, with the final body weight at week 12 being highest in group A (2.32±0.52 g), followed by group C (2.09±0.32 g) and group D (2.01±0.51 g), while group B had the lowest weight (1.87±0.61 g). A significant difference (P < 0.05) in average daily gain was also recorded, with group A showing the highest gain (5.7±0.43 g), while groups C and D showed lower gains (5.3±0.24 g and 5.0±0.61 g, respectively). Group B exhibited the lowest daily gain (4.2±0.17 g). Feed intake followed a similar pattern, with group A having the highest intake at week 12 (126±0.13 g), followed by groups C (124±0.13 g), D (123±0.03 g), and B (116±0.09 g). Feed efficiency was significantly different (P < 0.05), with group A showing the best feed efficiency (4.9±0.14), while group B recorded the poorest efficiency (5.0±0.17). Overall, stress significantly reduced growth performance in rabbits by decreasing body weight gain, feed intake, and feed efficiency, while probiotic and prebiotic β-GOS supplementation improved these parameters, indicating its potential to mitigate the adverse effects of stress.
Downloads
References
1. Appiah P., Nimoh F., Tham-Agyekum E. K., & Tracoh L.Y. (2011). Rabbit technologies: adoption studies in the Ashanti region of Ghana. African Journal of Agricultural Research, 6(11), 2539-2544.
2. Benno, Y., Sawada, K., & Mitsuoka, T. (1984). The intestinal microflora of infants: composition of fecal flora in breast‐fed and bottle‐fed infants. Microbiology and Immunology, 28(9), 975-986.
3. Biggs, P., Parsons, C. M., & Fahey, A. G. (2007). The effects of several oligosaccharides on growth performance, nutrient digestibilities, and cecal microbial populations in young chicks. Poultry Science, 86(11), 2327-2336.
4. Boehm, G. (2004). Prebiotics in Infant Formulas. Journal of Clinical Gastroenterology, 38(6), 76-79.
5. Boesten, R. J., & de Vos, W. M. (2008). Interactomics in the Human Intestine: Lactobacilli: And: Bifidobacteria: Make a Difference. Journal of Clinical Gastroenterology, 42, 163-167.
6. Bruno-Barcena, J. M., & Azcarate-Peril, M. A. (2015). Galacto-oligosaccharides and colorectal cancer: Feeding our intestinal probiome. Journal of Functional Foods, 12, 92-108.
7. Burkholder, K. M., Thompson, K. L., Einstein, M. E., Applegate, T. J., & Patterson, J. A. (2008). Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella enteritidis colonization in broilers. Poultry Science, 87(9), 1734-1741.
8. Clissold, F. J., Tedder B. J., Conigrave A. D., and Simpson S. J. (2010). The gastrointestinal tract as a nutrient-balancing organ. Proceedings Royal Society Biological Science, 277, 1751–1759.
9. Connolly, M. L., Tuohy, K. M., & Lovegrove, J. A. (2012). Wholegrain oat-based cereals have prebiotic potential and low glycaemic index. British Journal of Nutrition, 108(12), 2198-2206.
10. Cullere, M., & Dalle, Z. A. (2018). Rabbit meat production and consumption: State of knowledge and future perspectives. Meat Science, 143, 137-146.
11. Dal Bosco, A., Castellini, C., & Martino, M., (2012). The effect of dietary α-linolenic acid on rabbit meat quality. Meat Science, 90(4), 908-913.
12. Dimitroglou, A. (2011). Prebiotic Functional Foods and Skin Health in Commercial Fish: A Review. Aquaculture Research, 42(5), 710-726.
13. Everard, A., Lazarevic, V., Derrien, M., Girard, M., Muccioli, G. G., Neyrinck, A. M., ... & Cani, P. D. (2011). Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes, 60(11), 2775-2786.
14. Ewuola, E. O., Amadi C. U., Imam T. K., & Jagun A. T. (2012). Effects of dietary prebiotics and probiotics on the gut microbial characteristics in rabbits. International Journal of Applied Research Technology, 4, 150–157.
15. Ewuola, E. O., Amadi, C. U., & Imam, T. K. (2011). Performance evaluation and nutrient digestibility of rabbits fed dietary prebiotics, probiotics and symbiotics. International Journal of Applied Agriculture and Apiculture Research, 7(1), 107-117.
16. Ezema, C., & Eze, D. C. (2012). Determination of the effect of probiotic (Saccharomyces cerevisiae) on growth performance and hematological parameters of rabbits. Comparative Clinical Pathology, 21(1), 73-76.
17. Flickinger, E. A., & Fahey, G. C. (2002). Pet food and feed applications of inulin, oligofructose and other oligosaccharides. British Journal of Nutrition, 87(S2), S297-S300.
18. Fuller, R., (1989). Probiotics in Man and Animals. Journal of Applied Bacteriology, 66(5), 365-378.
19. Gallois, M. (2009). Nutritional strategies affecting health and welfare in Pigs. Animal, 3(10), 1401-1415.
20. Gibson, G.R. & Roberfroid, M.B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concepts of prebiotics. Journal of Nutrition, 125(6), 1401-1412.
21. Gidenne, T., Combes, S. & Fortun-Lamothe, L. (2010). Feed intake limitation strategies for the growing rabbit: effect on feeding behaviour, welfare, performance, digestive physiology and health: a review. Animal, 4(12), 28-35.
22. Hamasalim, H. J. (2016). Symbiotic as feed additives relating to animal health and performance. Advance Microbiology, 6, 288–302.
23. Hofacre, C., Beacorn T., Collett S. & Mathis G. (2003). Using competitive exclusion, mannan-oligosaccharide and other intestinal products to control necrotic enteritis. Journal Applied Poultry Research, 12, 60–64.
24. Huang, M.K, Choi, Y.J., Houde, R., Lee, J.W., Lee, B. & Zhao X. (2004). Effects of Lactobacilli and an acidophilic fungus on the production performance and immune responses in broiler chickens. Poultry Science, 83(5):788-795.
25. Jekkel, G. (2014). Physiological Background of Stress and Its Measuring Possibilities in Rabbits: A Review. World Rabbit Science, 22(3), 151-165.
26. Jha, R. (2019). Dietary Supplementation of a Novel Prebiotic, Fermented Tapioca Starch, in Broiler Chickens: Effects on Performance, Intestinal Health and Immune Status. Animal Feed Science and Technology, 251, 52-61.
27. Kulkarni, A., Oza, J., Yao, M., Sohail, H., Ginjala, V., Tomas-Loba, A., & Ganesan, S. (2013). Tripartite Motif-containing 33 (TRIM33) protein functions in the poly (ADP-ribose) polymerase (PARP)-dependent DNA damage response through interaction with Amplified in Liver Cancer 1 (ALC1) protein. Journal of Biological Chemistry, 288(45), 32357-32369.
28. Lara, L.J. & Rostagno, M.H. (2013). Impact of Heat Stress on Poultry Production. Animals, 3(2), 356-369.
29. Laxminarayan, R., Duse A., Wattal C., Zaidi A. K., Wertheim H. F., Sumpradit N., Vlieghe E., Hara G. L., Gould I. M., & Goossens H... (2013). Antibiotic resistance—the need for global solutions. Lancet Infectious Disease, 13, 1057–1098.
30. Lebas, F., Coudert, P., Rouvier, R., & De Rochambeau, H. (1997). The rabbit: husbandry, health, and production (Vol. 21). Rome: Food and Agriculture organization of the United Nations.
31. Likotrafiti, E., Tuohy K. M., Gibson G. R. & Rastall R. (2016). Antimicrobial activity of selected symbiotics targeted for the elderly against pathogenic Escherichia coli strains. International Journal Food Science Nutrition, 67, 83–91.
32. Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787-795.
33. Lunderquist, B., Nord, C. & Winberg, J. (1985). The composition of the faecal microflora in breast-fed and bottle-fed infants from birth to eight weeks. Acta Paediatric Scand, 74, 45–51.
34. Luo, E., Shen, G., Xie, K., Wu, X., Xu, Q., Lu, L., & Jing, X. (2007). Alimentary hyperlipemia of rabbits is affected by exposure to low‐intensity pulsed magnetic fields. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 28(8), 608-614.
35. Malekizadeh, M., Moeini, M. M., & Ghazi, S. (2012). The effects of different levels of ginger (Zingiber officinale Rosc) and turmeric (Curcuma longa Linn) rhizomes powder on some blood metabolites and production performance characteristics of laying hens. Journal of Poultry Science, 21(7), 112-119.
36. Mapara, M., Betsy, S. T. & K. M. Bhat (2012). "Rabbit as an animal model for experimental research." Dental Research Journal, 9(1), 111.
37. Marai, I.F.M., Abo Omar, J., Daader, A.H. & Yousef, H.M. (2005). Physiological response of New Zealand White rabbits to the hot summer of Egypt. In: Proceedings of the 8th World Rabbit Congress, September 7-10, Puebla, Mexico, pp. 1211-1220.
38. Marco, M.L., Pavan, S. & Kleerebezem, M. (2006). Towards understanding molecular modes of probiotic action. Current Opinion Biotechnology, 17, 204–210.
39. Markowiak, P., & Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9), 1021.
40. Mormède, P. (2007). Exploration of the Hypothalamic–Pituitary–Adrenal Function as a Tool to Evaluate Animal Welfare. Physiology & Behavior, 92(3), 317-339.
41. Niittynen, L., Kajander, K., & Korpela, R. (2007). Galacto-oligosaccharides and bowel function. Scandinavian Journal of Food and Nutrition, 51(2), 62-66.
42. Nwachukwu, C. U., Aliyu, K. I., & Ewuola, E. O. (2021). Growth indices, intestinal histomorphology, and blood profile of rabbits fed probiotics-and prebiotics-supplemented diets. Translational Animal Science, 5(3), 96-101.
43. Parnell, J. A., & Reimer, R. A. (2012). Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR: LA-cp rats. British Journal of Nutrition, 107(4), 601-613.
44. Paulina, M. & Katarzyna, S. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 9(9), 1021.
45. Pelicano, E. R. L., Souza, P. A. D., Souza, H. B. A. D., Figueiredo, D., Boiago, M., Carvalho S., & Bordon, V. (2005). Intestinal mucosa development in broiler chickens fed natural growth promoters. Brazil Journal Poultry Science, 7, 221–229.
46. Petracci, M., Soglia, F., Baldi, G., Balzani, L., Mudalal, S., & Cavani, C. (2018). Estimation of real rabbit meat consumption in Italy. World Rabbit Science, 26(1), 91-96.
47. Quinteiro-Filho, W.M., Gomes, A.V., Pinheiro, M.L., Ribeiro, A., Ferraz-de-Paula, V., Astolfi-Ferreira, C.S., Ferreira, A.J., & Palermo-Neto, J. (2012). Heat stress impairs performance and induces intestinal inflammation in broiler chickens infected with Salmonella Enteritidis. Avian Pathology, 41, 421-427.
48. Rafiq, K., Fan, Y.Y., Sherajee, S.J., Takahashi, Y., Matsuura, J. & Hase, N. (2014). Chymase activities and survival in endotoxin-induced human chymase transgenic mice. International Journal Medicine Science, 11(3), 222–5.
49. Rafiq, K., Hossain, M. T., Ahmed, R., Hasan, M. M., Islam, R., Hossen, M. I., & Islam, M. R. (2021). Role of different growth enhancers as alternative to in-feed antibiotics in poultry industry. Frontiers in Veterinary Science, 8.
50. Rommers, J.M., & Meijerhof, R., (1996). The effect of different floor types on foot and hock injuries in growing rabbits. Journal of Applied Rabbit Research, 19(2), 89-96.
51. Sengupta, S., & Chattopadhyay M. K. (2012). Antibiotic resistance of bacteria: a global challenge. Resonance. 17, 177–191.
52. Sharma, M. S., & Choudhary, P. R. (2017). Effect of fenugreek seeds powder (Trigonella foenum-graecum L.) on experimental induced hyperlipidemia in rabbits. Journal of Dietary Supplements, 14(1), 1-8.
53. Shoshin, O. M. A., & keçeci, t. Akut sicaklik stresine maruz kalan broyler civcivlerinde nigella sativa nin bazi antioksidan sistem parametreleri üzerine etkisinin belirlenmesi.
54. Szendro, Z., & Matics, Z. (2010). Behaviour of Growing Rabbits Under Various Housing Conditions. World Rabbit Science, 18(1), 21-31.
55. Tzortzis, G., & Vulevic, J. (2009). Galacto-oligosaccharide prebiotics. In Prebiotics and probiotics science and technology (207-244). Springer, New York, NY.
56. Varasteh, S., Braber, S., Akbari, P., Garssen, J., & Fink-Gremmels, J. (2015). Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PloS one, 10(9), 137-145.
57. Yin, J., (2018). Effects of Dietary Supplementation with an Oligosaccharide Prebiotic on the Growth Performance, Caecal Microbiota and Immunological Parameters of Broiler Chickens. British Poultry Science, 59(6), 674-682.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Faraz Ahmed Khan, Allah Bux Kachiwal, jahanzaib khaliq, Saeed Ahmed Soomro, Habibullah, Tayyab Ahmad, Muhammad Bilal Khan, Muhammad Umar Farooq, Shua Namood; Hamza Faiz; Amna Fayyaz, Muhammad Raheel, Shoaib Akhlaq, Shahzaib Khaliq, Maria Memon

This work is licensed under a Creative Commons Attribution 4.0 International License.