Teratogenic Effects of Potassium bromate On Drosophila melanogaster

Authors

  • Jyoti Aiwale
  • N. Shivanna

DOI:

https://doi.org/10.53555/jaz.v45i6.4998

Keywords:

Teratogen, Potassium bromate, Developmental time (DT), Viability, Drosophila melanogaster and aberrant phenotype

Abstract

In recent years, there has been growing concern about the toxic potential of substances consumed by humans. One such substance that has attracted attention is potassium bromate (KBrO3) used as a food additive, water disinfectant, and in pharmaceutical industries, has been extensively studied due to its detrimental impact on human health.  It could potentially cause serious teratogenic effects on embryonic development. Certain pharmacological and physiological characteristics of fruit flies (Drosophila melanogaster) are comparable to those of humans. So, to study the teratogenic potentials, different concentrations of KBrO3 (15mM to 30mM) were exposed to the egg to adult stages of fruit fly. This study assessed life-history parameters and revealed significant increases in larval and pupal mortality, extended developmental durations, smaller larval, pupal, and adult sizes, deformities in pupae and aberrant phenotype in adults, all in a concentration-dependent manner. The results showed that KBrO3  treatment (15mM to 30mM) increased the developmental time of egg to pupae (p < 0.0001) and egg to adult (p = 0.0017).  The viability rate of pupae (p < 0.0001); adults (p < 0.0001), the length (p< 0.0001) and width (p < 0.0001) of larvae and pupae decreased significantly as compared to the control group. These findings suggest that prenatal exposure to KBrO3 has clear teratogenic effects on fruit flies, indicating potential risks to human health if KBrO3 is used in any application.

Downloads

Download data is not yet available.

Author Biographies

Jyoti Aiwale

Department of Zoology, Karnatak University, Dharwad- 580003, Karnataka, India

N. Shivanna

Department of Zoology, Karnatak University, Dharwad- 580003, Karnataka, India.

References

1. Ahmad, M.K., S. Amani & R. Mahmood, 2014. Potassium bromate causes cell lysis and induces oxidative stress in human erythrocytes. Environ. Toxicol., 29(2): 138-145. https://doi.org/10.1002/tox.20780.

2. Allam A. A., S.I. Othman & A.M. Mahmoud, 2019. Deleterious effects of perinatal exposure to potassium bromate on the development of offspring of Swiss mice. Toxicol. Ind. Health., 35:63-78. https://doi.org/10.1177/0748233718814971.

3. Ballmaier, D. & B. Epe, 1995. Oxidative DNA damage induced by potassium bromate under cell-free conditions and in mammalian cells. Carcinogenesis., 16(2): 335-342. https://doi.org/10.1093/carcin/16.2.335.

4. Bello, Z. & N. Sani, 2023. Ascorbic Acid: A Safe Alternative to Potassium Bromate in Bread Production. Int. J. Glob. Sustain., 9(1): 1-10. https://doi.org/10.57233/ijsgs.v9i1.395.

5. Carocho, M., P. Morales & I.C. Ferreira, 2017. Sweeteners as food additives in the XXI century: A review of what is known, and what is to come. Food Chem. Toxicol., 107: 302-317. https://doi.org/10.1016/j.fct.2017.06.046.

6. Chauhan, D. & P. Jain, 2016. A scientific study of genotoxic-carcinogenic impacts of Potassium Bromate as food additive on human health. Int. Res. J. Eng. Technol., 3(6): 1136-1139.

7. Chavan, C., C. Thaker & C. Chaudhari, 2019. Determination of Bromate and Iodate from Bread and Flour by Ion Chromatography. Int. J. Sci. Res. 8(2): 468. https://doi.org/10.21275/ART20194947.

8. Coyle, I., M.J. Wayner & G. Singer, 1976. Behavioral teratogenesis: A critical evaluation. Pharmacol. Biochem. Behav., 4(2): 191-200. https://doi.org/10.1016/0091-3057(76)90014-9.

9. Demir, E., G. Vales, B. Kaya, A. Creus & R. Marcos, 2011. Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology., 5:417-424. https://doi.org/10.3109/17435390.2010.529176.

10. Di Cara F. & K. King-Jones, 2013. How clocks and hormones act in concert to control the timing of insect development. Curr. Top. Dev. Biol., 105:1-36. DOI: 10.1016/B978-0-12-396968-2.00001-4.

11. Fewtrell, L. 2004. Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion. Environ. Health. Perspect., 112(14): 1371-1374. https://doi.org/10.1289/ehp.7216.

12. FSSAI. 2018. FSSAI restricts use of potassium bromate as additives in food products. https://fssai.gov.in/upload/media/5a9e6ec79cd7eFSSAI_News_Potassium. Accessed on 21 February 2018.

13. Grace, P.G. 2016. Use of potassium bromate in baking industry: a perspective. J. Food. Technol. 4(3): 1-7.

14. Harden, C.L., K.J. Meador, P.B. Pennell, W. Allen Hauser, G.S. Gronseth, J.A. French, S. Wiebe, D. Thurman, B.S. Koppel, P.W. Kaplan & J.N. Robinson, 2009. Management issues for women with epilepsy—focus on pregnancy (an evidence‐based review): II. Teratogenesis and perinatal outcomes: report of the quality standards subcommittee and therapeutics and technology subcommittee of the American Academy of Neurology and the American Epilepsy Society. Epilepsia., 50(5): 1237-1246. DOI: 10.1212/WNL.0b013e3181a6b2f8.

15. International Agency for Research on Cancer (IARC), Potassium bromate, Monogr. Eval. Carcinog Risks Hum. 40 (1986) 207. https://inchem.org/documents/iarc/vol40/potassiumbromate Accessed on 30 September 1999.

16. Ishidate, M., J. Sofuni & K. Yoshikawa, 1981. Chromosomal aberration tests in vitro as a primary screening tool for environmental mutagens and/or carcinogens. Gann. Monogr. Canc. Res., 27: 95. https://search.jamas.or.jp/link/ui/1996096112.

17. Jahan, R., A.M. Bodratti, M. Tsianou & P. Alexandridis, 2020. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv. Colloid Interface Sci., 275: 102061. https://doi.org/10.1016/j.cis.2019.102061.

18. Jia Q., S. Liu, D. Wen, Y. Cheng, W.G. Bendena, J. Wang & S. Li, 2017. Juvenile hormone and 20-hydroxyecdysone coordinately control the developmental timing of matrix metalloproteinase-induced fat body cell dissociation. J .Biol. Chem., 292(52):21504-21516. DOI: 10.1074/jbc.M117.818880.

19. Jindra, M., S. R. Palli & L. M. Riddiford, 2013. The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol., 58(1):181-204. DOI: 10.1146/annurev-ento-120811-153700.

20. Jovanović, B., N. Jovanović, V.J. Cvetković, S. Matić, S. Stanić, E.M. Whitley & T.L. Mitrović, 2018. The effects of a human food additive, titanium dioxide nanoparticles E171, on Drosophila melanogaster-a 20 generation dietary exposure experiment. Sci Rep., 8:17922. https://doi.org/10.1038/s41598-018-36174.

21. Kurokawa, Y., Y. Hayashi, A. Maekawa, M. Takahashi, T. Kokubo & S. Odashima, 1983. Carcinogenicity of potassium bromate administered orally to F344 rats. J. Natl. Cancer. Inst., 71(5): 965-972. https://doi.org/10.1093/jnci/71.5.965.

22. Kurokawa, Y., Y. Matsushima, N. Takamura, T. Imazawa & Y. Hayashi, 1987. Relationship between the duration of treatment and the incidence of renal cell tumors in male F344 rats administered potassium bromate. Jpn. J. Cancer. Res., 78:358-364. https://doi.org/10.20772/cancersci1985.78.4_358.

23. Li K., Q. Q. Jia & S. Li, 2019. Juvenile hormone signaling – a mini review. Insect Sci., 26(4):600-606. DOI: 10.1111/1744-7917.12614.

24. Lim, J.H., S.H. Kim, I.C. Lee, C. Moon, S.H. Kim, D.H. Shin, H.C. Kim & J.C. Kim, 2011. Evaluation of maternal toxicity in rats exposed to multi-wall carbon nanotubes during pregnancy. Environ. Health. Toxicol., 26. DOI: 10.5620/eht.2011.26.e2011006.

25. Mitchell, N. C., J. I. Lin, O. Zaytseva, N. Cranna, A. Lee & L.M. Quinn, 2013. The Ecdysone receptor constrains wingless expression to pattern cell cycle across the Drosophila wing margin in a Cyclin B-dependent manner. BMC Dev. Biol., 13 (28): 1-13. DOI: 10.1186/1471-213X-13-28.

26. Liu S., K. Li, Y. Gao, X. Liu, W. Chen, W. Ge, Q. Feng, S. R. Palli & S. Li, 2018. Antagonistic actions of juvenile hormone and 20-hydroxyecdysone within the ring gland determine developmental transitions in Drosophila. Proc. Natl. Acad. Sci .U S A., 115(1):139-144. https://doi.org/10.1073/pnas.1716897115.

27. Liu. T., Y. Li, X. Zhao, M. Zhang & W. Gu, 2014. Ethylparaben affects lifespan, fecundity, and the expression levels of ERR, EcR, and YPR in Drosophila melanogaster. J. Insect. Physiol., 71:1-7. https://doi.org/10.1016/j.jinsphys.2014.09.008.

28. Mirth, C.K. & A.W. Shingleton, 2012. Integrating body and organ size in Drosophila: recent advances and outstanding problems. Front. Endocrinol., 3:49. https://doi.org/10.3389/fendo.2012.00049.

29. Niwa Y.S. & R Niwa, 2014. Neural control of steroid hormone biosynthesis during development in the fruit fly Drosophila melanogaster. Genes. Genet. Syst., 89(1):27-34. DOI: 10.1266/ggs.89.27.

30. Nüsslein-Volhard, C. 1977. Genetic analysis of pattern-formation in the embryo of Drosophila melanogaster: Characterization of the maternal-effect mutant bicaudal. Wilehm. Roux. Arch. Dev. Biol., 183: 249-268. DOI: 10.1007/BF00867325.

31. Pappus, S.A. & M. Mishra, 2018. A Drosophila model to decipher the toxicity of nanoparticles taken through oral routes. Cellular. and molecular. toxicology of nanoparticles., 311-322. https://doi.org/10.1007/978-3-319-72041-8_18.

32. Pappus, S.A. & M. Mishra , 2018. A Drosophila model to decipher the toxicity of nanoparticles taken through oral routes. J .Biochem. Mol. Toxicol., 3(11): 322. https://doi.org/10.1007/978-3-319-72041-8_18.

33. Roberts, D. B. 1998. Drosophila : A Practical Approach. 2nd ed. Oxford [England]: IRL Press at Oxford University Press.

34. Robertson, F.W. 1960. The ecological genetics of growth in Drosophila 1. Body size and developmental time on different diets 1. Body size and developmental time on different diets. Genet. Res., 1:288-304. https://doi.org/10.1017/S0016672300000264.

35. Sambu, S., U. Hemaram, R. Murugan & A.A. Alsofi, 2022. Toxicological and Teratogenic Effect of Various Food Additives: An Updated Review. Biomed. Res. Int., 2022(1): 6829409. https://doi.org/10.1155/2022/6829409.

36. Schuler, R.L., B.D. Hardin & R.W. Niemeier, 1982. Drosophila as a tool for the rapid assessment of chemicals for teratogenicity. Teratog. Carcinog. Mutagen., 2(3‐4): 293-301. DOI: 10.1002/1520-6866(1990)2:3/4<293:aid tcm1770020310>3.0.co;2-w.

37. Shahidi, F. & P. Ambigaipalan, 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. J. Funct. Foods., 18: 820-897. https://doi.org/10.1016/j.jff.2015.06.018.

38. Sharma, A. & S. Kumar, 1999. Toxic and teratogenic effects of antiepileptic drugs in Drosophila. Curr. Sci., 76(4): 476-480. http://www.jstor.org/stable/24100746.

39. Shivanna, N., G.S. Murthy & S.R. Ramesh, 1996. Larval pupation site preference and its relationship to the glue proteins in a few species of Drosophila. Genome., 39(1): 105-111. DOI: 10.1139/g96-014.

40. Simmons, A.L, J.J. Schlezinger & B.E. Corkey, 2014. What are we putting in our food that is making us fat? Food additives, contaminants, and other putative contributors to obesity. Curr. Obes. Rep., 3: 273-285. https://doi.org/10.1007/s13679-014-0094-y.

41. Stasiak, M., A. Lewiński, M. Karbownik-Lewińska, 2009. Relationship between toxic effects of potassium bromate and endocrine glands. Endokrynol. Pol. 60(1): 40-50.

42. Umemura, T, K., Sai, A. Takagi, R. Hasegawa & Y. Kurokawa, 1995. A possible role for oxidative stress in potassium bromate (KBrO3) carcinogenesis. Carcinogenesis., 16(3):593-597. https://doi.org/10.1093/carcin/16.3.593.

43. Vales G., E. Demir, B. Kaya, A. Creus & R. Marcos, 2013. Genotoxicity of cobalt nanoparticles and ions in Drosophila. Nanotoxicology., 7:462-468. https://doi.org/10.3109/17435390.2012.689882.

44. Vecchio G., A. Galeone, V. Brunetti, G. Maiorano, L. Rizzello, S. Sabella & P. P Pompa, 2012. Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster. Nanomed: Nanotechnol. Biol. Med. 8:1-7. https://doi.org/10.1016/j.nano.2011.11.001.

45. Weiner A.K., A. Ramirez, T. Zintel, R.W. Rose, E. Wolff, A. L. Parker & S. T. Smith, 2014. Bisphenol A affects larval growth and advances the onset of metamorphosis in Drosophila melanogaster. Ecotoxicol. Environ. Saf., 101:7-13. https://doi.org/10.1016/j.ecoenv.2013.12.008.

46. Wilson, J.G. 1978. Review of in vitro systems with potential for use in teratogenicity screening. J. Environ. Pathol. Tox., 2(1): 149-167.

47. Mayshar, Y., O Yanuka & N. Benvenisty, 2011. Teratogen screening using transcriptome profiling of differentiating human embryonic stem cells. J. Cell. Mol. Med., 15(6): 1393-401. DOI: 10.1111/j.1582-4934.2010.01105.x.

48. Yun Mu., X. Hu, P. Yang, L. Sun, W. Gu & M. Zhang, 2021. The effects of cadmium on the development of Drosophila and its transgenerational inheritance effects. Toxicology., 462: 152931. https://doi.org/10.1016/j.tox.2021.152931.

49. Zomerdijk, I.M., R. Ruiter, L.M. Houweling, R.M. Herings, S.M. Straus & B.H. Stricker, 2015. Dispensing of potentially teratogenic drugs before conception and during pregnancy: a population‐based study. BJOG: Int. J. Gynecol. Obstet., 122(8): 1119-1129. DOI: 10.1111/1471-0528.13128.

Downloads

Published

2024-09-14

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.