Exploring The Antimicrobial Potential of Phyllanthus Emblica L. (Amla) Using Molecular Docking Studies Against Shrimp Pathogens

Authors

  • Mariam Ali Kki Mohamed Ali Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai, Tamil Nadu, India
  • Prakash Balu Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai, Tamil Nadu, India

DOI:

https://doi.org/10.53555/jaz.v43i1.1865

Keywords:

Vibriosis, Shrimp, Phyllanthus Emblica, Phytochemical Analysis, Dockin

Abstract

Vibriosis is a major problem in shrimp farms. Farmers indiscriminately use hormones, antibiotics, disinfectants and other chemicals in fish feed and culture water to protect their crops. E. coli and Aeromonas sp were highly predominant isolates. Herbs act as agents in aquaculture to control or reduce pathogen infections. The results of phytochemicals screening of fruit extract of Phyllanthus emblica showed the presence of various phytchemicals. Phyllanthus emblica extract shows anti-bacterial properties against biofilm producing shrimp pathogens. Among the 10 bacterial genera, E. coli and P.aeruginosa were highly suppressed. The extracts exhibited the bacteria growth inhibitory activity in a dose-dependent manner. The compound sitosterol has potent antibiofilm activity was showed by molecular docking, which revealed a significant binding energy and interaction (-8.4 Kcal/mol) between it and key biofilm-forming protein. Diving analysis was done using the chemical compounds found in GCMS analysis.

Downloads

Download data is not yet available.

References

1. Kini Pooja H. Singh , P. H., & B., R. (2020). Analysis of microbes in marine Prawn, Penaeus monodon, from Satpati fish market of Palghar District, Maharashtra, India. International Journal for Innovative research in multidisciplinary, 6(10), 30-35.

2. Bassetti, M., Righi, E., Vena, A., Graziano, E., Russo, A., & Peghin, M. (2018). Risk stratification and treatment of ICU-acquired pneumonia caused by multidrug-resistant/extensively drug-resistant/pandrug-resistant bacteria. Current Opinion in Critical Care, 24(5), 385–393.

3. Sharif Nilla, S., Mustafa, M. S. G., Ahsan, D. A., Khan, M. R., & Khan, A. R. (2012). Bacterial abundance in Indian white shrimp, Penaeus indicus collected from two different market conditions of Dhaka city. Dhaka University Journal of Biological Sciences, 21(1), 29-38.

4. Gandhi, A. J., Kulkarni, A., Bora, M., & Hiray, L. (2020). Antimicrobial activity of Phyllanthus emblica – A medicinal plant. European Journal of Molecular & Clinical Medicine, 08(2), 1730-1735.

5. Hannan, A. M. D., Rahman, M. M. D., Mondal, N. M. D., D, S. C., Chowdhury, G., & Islam, T. (2019). Molecular identification of Vibrio alginolyticus causing vibriosis in shrimp and its herbal remedy. Polish Journal of Microbiology, 68(4), 429-438.

6. Abraham, T. J., Sasmal, D., Dash, G., Nagesh, T. S., Das, S. K., Mukhopadhayay, S. K., et al. (2013). Epizootology and pathology of bacterial infections in cultured shrimp Penaeus monodon Fabricius 1798 in West Bengal, India. Indian Journal of Fisheries, 60, 167-171.

7. Talukder, A. S., Punom, N. J., Eshik, M. M. E., Begum, M. K., Islam, H. M. R., Hossain, Z., & Rahman, M. S. (2021). Molecular identification of white spot syndrome virus (WSSV) and associated risk factors for white spot disease (WSD) prevalence in shrimp (Penaeus monodon) aquaculture in Bangladesh. Journal of Invertebrate Pathology, 179, 107535.

8. Verderosa, A. D., Totsika, M., & Fairfull-Smith, K. E. (2019). Bacteria biofilm eradication agents: A current review. Frontiers in Chemistry, 7, 1-17.

9. Balcázar, J. L., Blas, I. D., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D., & Múzquiz, J. L. (2006). The role of probiotics in aquaculture. Veterinary Microbiology, 114(3), 173-186.

10. Bauer, A. W., Kirby, W. M. M., Strerris, J. C., & Turk, M. (1999). Antibiotic susceptibility testing by a standard single disk method. American Journal of Clinical Pathology, 45, 493-496.

11. Bulfon, C., Volpatti, D., & Galeotti, M. (2015). Current research on the use of plant derived products in farmed fish. Aquaculture Research, 46, 513-551.

12. Cai, J., Han, Y., & Wang, Z. (2006). Isolation of Vibrio parahaemolyticus from abalone (Haliotis diversicolor supertexta L.) post larvae associated with mass mortalities. Aquaculture, 257, 161-166.

13. Freeman, D. J., Falkiner, F. R., & Keane, C. T. (1989). New method for detecting slime production by coagulase negative staphylococci. Journal of Clinical Pathology, 42, 872-874.

14. Gantait, S., Mahanta, M., Bera, S., & Verma, S. K. (2021). Advances in biotechnology of Emblica officinalis Gaertn. syn. Phyllanthus emblica L.: a nutraceuticals-rich fruit tree with multifaceted ethnomedicinal uses. 3 Biotech, 11, 1-25.

15. Haldar, S., Chatterjee, S., Asakura, M., Vijayakumaran, M., & Yamasaki, S. (2007). Isolation of Vibrio parahaemolyticus and Vibrio cholerae (Non-O1 and O139) from moribund shrimp (Penaeus monodon) and experimental challenge study against post larvae and juveniles. Annals of Microbiology, 57(1), 55-60.

16. Doan, H. V., Lumsangkul, C., Sringarm, K., Hoseinifar, S. H., Dawood, M. A. O., El-Haroun, E., ... Jaturasitha, S. (2022). Impacts of Amla (Phyllanthus emblica) fruit extract on growth, skin mucosal and serum immunities, and disease resistance of Nile tilapia (Oreochromis niloticus) raised under biofloc system. Aquaculture Reports, 22, 1-8.

17. Hossain, M. S., Aktaruzzaman, M., Fakhruddin, A. N. M., Uddin, M. J., Rahman, S. H., Chowdhury, M. A. Z., & Alam, M. K. (2012). Prevalence of multiple drug resistant pathogenic bacteria in cultured black tiger shrimp (Penaeus monodon Fabricius). Global Journal of Environmental Research, 6(3), 118-124.

18. Irsyam, M., Cummins, P. R., Asrurifak, M., et al. (2020). Development of the 2017 national seismic hazard maps of Indonesia. Earthquake Spectra, 36(1_suppl), 112-136.

19. Jahir, A. K., & Saurabh, T. (2011). A study on antibacterial properties of Rosa indica against various pathogens. Asian Journal of Plant Science and Research, 1(1), 22

20. Jantan, I., Haque, M. A., Ilangkovan, M., & Arshad, L. (2019). An insight into the modulatory effects and mechanisms of action of Phyllanthus species and their bioactive metabolites on the immune system. Frontiers in Pharmacology, 10, 878.

21. Kusumaningrum, H. P., & Zainuri, M. (2015). Detection of bacteria and fungi associated with Penaeus monodon postlarvae mortality. Procedia Environmental Sciences, 23, 329-337.

22. Lim, M. H., & Apun, K. (2013). Antimicrobial susceptibilities of Vibrio parahaemoliticus isolates from tiger shrimps (Penaeus monodon) aquaculture in Kuching, Sarawak. Research Journal of Microbiology, 8(1), 55-62.

23. Rahman, M. M., Rahman, F., Afroze, F., Yesmin, F., Fatema, K. K., Das, K. K., & Noor, R. (2012). Prevalence of pathogenic bacteria in shrimp samples collected from hatchery, local markets, and the shrimp processing plant. Bangladesh Journal of Microbiology, 29(1), 7-10.

24. Radulovi, N. S., Blagojevi, P. D., Stojanovi-Radi, Z. Z., & Stojanovi, N. M. (2013). Antimicrobial plant metabolites: structural diversity and mechanism of action. Current Medicinal Chemistry, 20, 932-952.

25. Savoia, D. (2012). Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiology, 7(8), 979-990.

26. Shariff, M., Yusoff, F. M., Devaraja, T. N., & Srinivasa Rao, P. S. (2001). The effectiveness of a commercial microbial product in poorly prepared tiger shrimp, Penaeus monodon (Fabricius), ponds. Aquaculture Research, 32, 181-187.

27. Ugochukwu, S. C., Arukwe, U. I., & Onuoha, I. (2013). Preliminary phytochemical screening of different solvent extracts of stem bark and roots of Dennetia tripetala G. Baker. African Journal of Plant Science Research, 3(3), 10-13.

28. Kumar, S., Kumar, D., Yadav, P. K., Bal, L. M., & Singh, B. P. (2018). Amla as phytogenic feed additive for efficient livestock production. Journal of Pharmacognosy and Phytochemistry, 7(4), 1030-1036.

29. Syahidah, A., Saad, C. R., Daud, H. M., & Abdelhadi, Y. M. (2014). Status and potential of herbal applications in aquaculture: A review. Iranian Journal of Fisheries Sciences, 14(1), 27-44.

30. Tricia, D. M., McLaughlin, W., & Brown, P. D. (2006). Antimicrobial resistance of Escherichia coli isolates from broiler chickens and humans. BMC Veterinary Research, 2, 7.

31. Uma, A., Meena, M., & Muralimano, B. (2008). Identification of bacterial pathogens infecting Penaeus monodon tiger shrimp by 16srdna amplification and sequencing. Procedia Environmental Sciences, 23, 329–337.

32. Watts, J. E. M., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The rising tide of antimicrobial resistance in aquaculture: Sources, sinks, and solutions. Marine Drugs, 15(6), 158.

33. Zanetti, S., Spanu, T., Deriu, A., Romano, L., Sechi, L. A., & Fadda, G. (2001). In vitro susceptibility of Vibrio spp. isolated from the environment. International Journal of Antimicrobial Agents, 17, 407-409.

34. Kim, S. H., Lee, S. J., Lee, J. H., Sun, W. S., & Kim, J. H. (2002). Antimicrobial activity of 9-O-acyl- and 9-O-alkylberberrubine derivatives. Planta Medica, 68(3), 277-281.

35. Sparzak, B., Krauze-Baranska, M., & Pobocka-Olech, L. (2009). High-performance thin-layer chromatography densitometric determination of β-sitosterol in Phyllanthus species. Journal of AOAC International, 92(5), 1343-1347.

36. Alawode, T. T., Lajide, L., Olaleye, M., et al. (2021). Stigmasterol and β-Sitosterol: Antimicrobial compounds in the leaves of Icacina trichantha identified by GC-MS. Beni-Suef University Journal of Basic and Applied Sciences, 10, 80.

37. Mohameda, T. S., Refahya, L. A., Romeih, M. H., Hameda, M. M., Ahmed, H. O., & El-Hashash, M. A. (2022). Chromatographic isolation and characterization of certain bioactive chemical ingredients of Phyllanthus emblica extracts and assessment of their potentials as antiviral and anticancer agents. Egypt. Journal of Chemistry, 65(1), 179-192.

Downloads

Published

2022-11-29

Similar Articles

<< < 72 73 74 75 76 77 78 79 80 81 > >> 

You may also start an advanced similarity search for this article.