Mycosynthesis of Silver-Nanoparticles and their bio efficacy against Spilosoma obliqua (Walker)

Authors

  • Dipjyoti Chakraborty
  • Dr. Dipika Kalita

DOI:

https://doi.org/10.53555/jaz.v43i1.5294

Keywords:

Trichoderma ressei, Entomopathogens, Silver-Nanoparticles, Spilosoma obliqua, Biological Pest control, Larvicidal activity.

Abstract

Abstract

 

Background: It is well established that insect pests and most notably, the Spilosoma obliqua is a major hindrance in the agricultural productivity of India, and that the very wide use of synthetic pesticides in agriculture contributes to the development of resistance and the destruction of the environment. Greener chemistry variant, e.g. the production of silver nanoparticles (AgNPs) using entomopathogenic fungi will be a more environmental-friendlier solution. 

Purposes: The purpose of the experiment was (i) to prepare and fully characterize the AgNPs through producing them with the help of the fungus, Trichoderma reesei and (ii) to determine the larvicidal efficiency of the nanoparticles to third, fourth and fifth instar of S. obliqua. 

Methods: The growth of T. reesei in a liquid broth medium liquid and subsequent production of extracellular AgNPs through the interaction of culture filtrate with silver nitrate (AgNO 3). The successful fabrication of the nanoparticles was assessed using ultraviolet- visible spectroscopy which showed the presence of a localized surface plasmon resonance peak at 390nm and Fourier- transform infrared spectroscopy which showed the presence of functional groups engaged in the reduction and capping processes. The third, fourth and fifth instar larvae were subjected to oral administration by feeding castor leaves sprayed with AgNPs at the concentration levels of 10 it 100mg/ml -1 per each time of 6, 12, or 24 hours. Two-way analysis of variance was performed on mortality data to be carried out with post-hoc test of Dunnett. There was also a complementary topical assay that tested the effectiveness of direct dermal contact.  Findings: Spectroscopic analysis helped validate the existence of the desired 390nm plasmon band, whereas FT-IR spectra helped support the presence of biomolecule-containing hexafluorides under tying the nanoparticles. The larval activity was dose- and time-dependent, with a 100mg/ml concentration yielding an approximate of 99 percent of mortality in the third instar, 98 per cent in the fourth instar, and 87 per cent in the fifth instar after 24 hours. The mortality rate of the topical application was approximately 60 0 -150 0 after 24 hours, which made the organ exposure significantly more efficient. 

                                           

Conclusions: The use of T. reesei makes the economical and environmentally friendly production of AgNPs economical yet effective in terms of larvicidal activities against the oblique insect, S. obliqua. These findings support fungus-mediated AgNPs as potential sustainable biopesticides; non-the less, additional research on them including a larger host spectrum and field-testing is necessary to be used in India in the future.

Downloads

Download data is not yet available.

Author Biographies

Dipjyoti Chakraborty

Research Scholar, Department of Zoology, Bhattadev University, Bajali, Assam-781325

Dr. Dipika Kalita

Assistant Professor, Department of Zoology, Bhattadev University, Bajali, Assam-781325

References

1. Baker, R. A., & Tatum, J. H. (1998). Novel anthraquinones from stationary cultures of Fusarium oxysporum. Journal of Fermentation and Bioengineering, 85(4), 359–361. https://doi.org/10.1016/S0922-338X(98)80077-9

2. Balaprasad, A., Chinmay, D., Ahmad, A., & Sastry, M. (2005). Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. Journal of Nanoscience and Nanotechnology, 5(7), 1665–1671.

3. Benserradj, O., & Mihoubi, I. (2014). Larvicidal activity of entomopathogenic fungi Metarhizium anisopliae against mosquito larvae in Algeria. International Journal of Current Microbiology and Applied Sciences, 3(1), 54–62. ISSN 2319–7706.

4. Bhainsa, K. C., & D’Souza, S. F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergilluscolloids. Colloids and Surfaces B: Biointerfaces, 47(2), 160–164.

https://doi.org/10.1016/j.colsurfb.2005.11.026

5. Bhattacharyya, A., Bhaumik, A., Rani, P. U., Mandal, S., & Epidi, T. T. (2010). Nanoparticles—A recent approach to insect pest control. African Journal of Biotechnology, 9, 3489–3493.

6. Bhuiyan, T. C., & Sardar, N. (1971). Studies on the phase variation in jute hairy caterpillar Diacrisia obliqua (Walker) (Lepidoptera: Arctiidae). Pakistan Journal of Zoology, 3(1), 101–121.

7. Casida, J. E., & Quistad, G. B. (2005). Insecticide targets: Learning to keep up with resistance and changing concepts of safety. Agricultural Chemistry and Biotechnology, 43, 185–191.

8. Djou, Y. W. (1938). A lima bean leaf-hopper, Diacrisia obliqua Walk. Lepidoptera. Lingran Journal of Science, 17(4), 639–645.

9. Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology, and Medicine, 6(1), 103–109. https://doi.org/10.1016/j.nano.2009.04.006

10. Gaikwadsagar, B. A. (2012). Green synthesis of silver nanoparticles using Aspergillus niger and its efficacy against human pathogen. European Journal of Experimental Biology, 2, 1654–1658.

11. Gotyal, B. S., Satpathy, S., Selvaraj, K., & Ramesh Babu, V. (2013). Comparative biology of Bihar hairy caterpillar, Spilosoma obliqua on wild and cultivated species of jute. Indian Journal of Entomology, 41(3), 219–221.

12. Govindarajan, M., Jebanesan, A., & Reetha, D. (2005). Larvicidal effect of extracellular secondary metabolites of different fungi against the mosquito, Culex quinquefasciatus Say. Tropical Biomedicine, 22(1), 1–3.

13. Hooks, C. R., & Kratochvil, R. (2014). Agronomic crop production. Agronomy News. University of Maryland Extension.

14. https://www.pib.gov.in/index.aspx. (2022). Press Information Bureau, Government of Imdia. Retrieved from https://www.pib.gov.in: https://www.pib.gov.in

15. Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., Hong, J., & Chen, C. (2007). Biosynthesis of silver and gold nanoparticles by novel sun dried Cinnamomum camphora leaf. Nanotechnology, 18(10), 105104. https://doi.org/10.1088/0957-4484/18/10/105104

16. Hussain, A., Tian, M. Y., He, Y. E., & Ahmed, S. (2009). Entomopathogenic fungi disturbed the larval growth and feeding performance of Ocinara varians (Lepidoptera: Bombycidae) larvae. Insect Science, 16(6), 511–517. https://doi.org/10.1111/j.1744-7917.2009.01272.x

17. Kowshik, M., Deshmukh, N., Vogel, W., Urban, J., Kulkarni, S. K., & Paknikar, K. M. (2002). Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnology and Bioengineering, 78(5), 583–588. https://doi.org/10.1002/bit.10233

18. Kowshik, M., Vogel, W., Urban, J., Kulkarni, S. K., & Paknikar, K. M. (2002). Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Advanced Materials, 14(11), 812–815.

19. Lakowicz, J. R., Gratton, E., Cherek, H., Maliwal, B. P., & Laczko, G. (1984). Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore-protein complex using frequency-domain phase-modulation fluorometry. Journal of Biological Chemistry, 259(17), 10967–10972.

20. Li, G., He, D., Qian, Y., Guan, B., Gao, S., Cui, Y., Yokoyama, K., & Wang, L. (2012). Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. International Journal of Molecular Sciences, 13(1), 466–476. https://doi.org/10.3390/ijms13010466

21. Liang, H., Xing, Y., Chen, J., Zhang, D., Guo, S., & Wang, C. (2012). Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae). BMC Complementary and Alternative Medicine, 12, 238. https://doi.org/10.1186/1472-6882-12-238

22. Mansoori, G. A. (2010). Synthesis of nanoparticles by fungi. U.S. Patent Application No. 20100055199.

23. Milner, R. J., Huppatz, R. J., & Swaris, S. C. (1991). A new method for assessment of germination of Metarhiziumconidia. Journal of Invertebrate Pathology, 57(1), 121–123. https://doi.org/10.1016/0022-2011(91)90048-U

24. Moore, D., Bridge, P. D., Higgins, P. M., Bateman, R. P., & Prior, C. (1993). Ultraviolet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens. Annals of Applied Biology, 122(3), 605–616. https://doi.org/10.1111/j.1744-7348.1993.tb04061.x

25. Morley-Davies, J., Moore, D., & Prior, C. (1996). Screening of Metarhizium and Beauveria spp. conidia with exposure to simulated sunlight and a range of temperatures. Mycological Research, 100(1), 31–38. https://doi.org/10.1016/S0953-7562(96)80097-9

26. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Ramani, R., Parischa, R., Ajaykumar, P. V., Alam, M., Sastry, M., & Kumar, R. (2001). Bioreduction of AuCl4– ions by the fungus, Verticillium sp. Angewandte Chemie International Edition, 40(19), 3585–3588.

27. Mukherjee, P., Ray, M., Mandal Dey, G., Mukherjee, P., Ghatak, J., et al. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a nonpathogenic and agriculturally important fungus Asperellum sp. Nanotechnology, 19(7), 075103.

28. Mukherjee, P., Senapati, S., Mandal, D., Ahmad, A., Khan, M. I., Kumar, R., & Sastry, M. (2002). Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem, 3(5), 461–463.

29. Oksanen, T., Pere, J., Paavilainen, L., Buchert, J., & Viikari, L. (2000). Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. Journal of Biotechnology, 78(1), 39–48. https://doi.org/10.1016/S0168-1656(99)00232-1

30. Prakash, S., Singh, G., Soni, N., & Sharma, S. (2010). Pathogenicity of Fusarium oxysporum against the larvae of Culex quinquefasciatus (Say) and Anopheles stephensi (Liston) in laboratory. Parasitology Research, 107(3), 651–655. https://doi.org/10.1007/s00436-010-1911-1

31. Priya, S., & Santhi, S. (2014). A review on nanoparticles in mosquito control – A green revolution in future. International Journal of Research in Applied Science and Engineering Technology (IJRASET).

32. Priyanka, J., Srivastava, N., & Prakash, S. (2001). Chrysosporium tripicum efficacy against Anopheles stephensi larvae in the laboratory. Journal of the American Mosquito Control Association, 17(2), 127–130.

33. Saxena, A., Tripathi, R. M., & Singh, R. P. (2010). Biological synthesis of silver nanoparticles using onion (Allium cepa) extract and their antibacterial activity. Digital Journal of Nanomaterials & Biosciences, 5(2), 427–432.

34. Shankar, S. S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., & Sastry, M. (2004). Biological synthesis of triangular gold nanoprisms. Nature Materials, 3(7), 482–488.

35. Sharma, H. C. (2001). Cotton bollworm/legume pod borer, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera): Biology and management. Crop Protection Compendium. International Crops Research Institute for the Semi-Arid Tropics.

36. Slansky, F., Jr. (1985). Food utilization by insects: Interpretation of observed differences between dry weight and energy efficiencies. Entomologia Experimentalis et Applicata, 39(1), 47–60. https://doi.org/10.1111/j.1570-7458.1985.tb03542.x

37. Smith, P. R., Holmes, J. D., Richardson, D. J., Russell, D. A., & Sodeau, J. R. (1998). Photophysical and photochemical characterization of bacterial semiconductor cadmium sulfide particles. Journal of the Chemical Society, Faraday Transactions, 94(9), 1235–1241. https://doi.org/10.1039/a708742j

38. Subashini, H. D., Malarvannan, S., & Pillai, R. R. (2004). Dodonaea angustifolia – A potential biopesticide against Helicoverpa armigera. Current Science, 86(1), 26–28.

39. Suganthi, & Nagapasupathi. (2005). Consumption and utilization of food by castor semilooper Achaea janata. Journal of Ecotoxicology and Environmental Monitoring, 15(3), 201–205.

40. Thomas, T. R. A., Kavlekar, D. P., & LokaBharathi, P. A. (2010). Marine drugs from sponge–microbe association: A review. Marine Drugs, 8(4), 1417–1468. https://doi.org/10.3390/md8041417

41. Verma, P., & Prakash, S. (2010). Efficacy of Chrysosporium tropicum metabolite against mixed population of adult mosquito (Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti) after purification with flash chromatography. Parasitology Research, 107(1), 163–166. https://doi.org/10.1007/s00436-010-1854-6

42. Watson, J. H. P., Cressey, B. A., Roberts, A. P., Ellwood, D. C., Charnock, J. M., & Soper, A. K. (2000). Structural and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced by sulphate-reducing bacteria. Journal of Magnetism and Magnetic Materials, 214(1–2), 13–30. https://doi.org/10.1016/S0304-8853(00)00025-1

43. Wen-Ru, L., Xiao-Bao, X., Qing-Shan, S., Hai-Yarran, Z., You-Sheng, O. U.-Y., & Yi-Ben, C. (2010). Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Applied Microbiology and Biotechnology, 85(4), 1115–1122.*

44. Wraight, S. P., Inglis, G. D., & Goettel, M. S. (2007). Fungi. In L. A. Lacey & H. K. Kaya (Eds.), Field manual of techniques in invertebrate pathology (2nd ed., pp. 223–248). Springer.

https://doi.org/10.1007/978-1-4020-5933-9

45. Yang, X., Zhang, L., Guo, B., & Guo, S. (2004). Preliminary study of vincristine-producing endophytic fungus isolates from leaves of Catharanthus roseus. Zhong Cao Yao, 35(1), 79–81.

46. Yasur, J., & Pathipati, U. R. (2015). Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development, and physiology. International Journal of Nanomaterials and Biostructures, 5(2), 41–48.

Downloads

Published

2022-10-21

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.