A Study On Potential Drug Target For SARS-CoV-2-And Combinatorial Therapeutic Approach To Combat COVID-19

Main Article Content

Debojyati Datta
Semanti Ghosh

Abstract

The COVID-19 pandemic caused by (SARS-CoV-2) a threat, leading to numerous deaths and socioeconomic disruptions. Spurred intense research efforts effective treatment. Our study provides a brief overview COVID-19. Urgent need for effective treatments has prompted extensive research to identify potential drug targets against disease. Review shows most promising drug and their associated therapeutic approaches for combating COVID-19. Key targets include the spike protein, which facilitates viral entry into host cells, and proteases essential for viral replication. Additionally, RNA-dependent RNA polymerase (RdRp) inhibitors have been explored to inhibit viral RNA replication, highlighting their mechanisms of action, potential therapeutic benefits, and challenges in drug development. Host factors, such as the ACE2 receptor and immune response modulators, are also targeted. Combination therapies and overcoming challenges in the drug development are crucial for successful COVID-19 treatment. In this review the molecular docking study is discussed here. The future perspective of drug targets for COVID-19 encompasses a range of innovative approaches aimed at combating the virus and preparing for future outbreaks. The review also discusses the challenges faced and future directions in the field of drug target research for COVID-19. This review will provide an overview of the anticipated advancements in drug target discovery and development for COVID-19, highlighting key areas of focus and potential strategies.

Downloads

Download data is not yet available.

Article Details

How to Cite
Debojyati Datta, & Semanti Ghosh. (2024). A Study On Potential Drug Target For SARS-CoV-2-And Combinatorial Therapeutic Approach To Combat COVID-19. Journal of Advanced Zoology, 45(1), 511–517. https://doi.org/10.53555/jaz.v45i1.4567
Section
Articles
Author Biographies

Debojyati Datta

Department of Biotechnology, School of Life Sciences, Swami Vivekananda University, Barrackpore, West Bengal-700121

Semanti Ghosh

Department of Biotechnology, School of Life Sciences, Swami Vivekananda University, Barrackpore, West Bengal-700121.

References

Abomughaid, M.; Nofal, M. S.; Ghaleb, K. I.; Seadawy, M. G.; Wahab, M. G. A.; Hegazy, A. S.; Ghareeb, D. A.; (2022); ZnO-chlorogenic acid nanostructured complex inhibits Covid-19 pathogenesis and increases hydroxychloroquine efficacy; Journal of King Saud University - Science; 34(8):102296; https://doi.org/10.1016/j.jksus.2022.102296

AbouAitah, K.; Allayh, A. K.; Wojnarowicz, J.; Shaker, Y. M.; Sroda, A. S. and Lojkowski, W.; (2021); Nanoformulation Composed of Ellagic Acid and Functionalized Zinc Oxide Nanoparticles Inactivates DNA and RNA Viruses; Pharmaceutics; 13(12); 2174; https://doi.org/10.3390/pharmaceutics13122174

Adem, Ş.; Eyupoglu, V.; Sarfraz, I.; Rasul, A.; Zahoor, A. F.; Ali, M.; Abdalla, M.; Ibrahim, I. M.; Elfiky, A. A.; (2021); Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19; Phytomedicine; 85:153310; https://doi.org/10.1016/j.phymed.2020.153310

Avula, B.; Katragunta, K.; Wang, Y. H.; Ali, Z.; Khan, I. A.; (2022); Simultaneous determination and characterization of flavonoids, sesquiterpene lactone, and other phenolics from Centaurea benedicta and dietary supplements using UHPLC-PDA-MS and LC-DAD-QToF; Journal of Pharmaceutical and Biomedical Analysis; 216:114806; https://doi.org/10.1016/j.jpba.2022.114806

Chang, R.; Sun, W. Z.; (2020); Repositioning chloroquine as antiviral prophylaxis against COVID-19: potential and challenges; Drug Discovery Today; 25(10); 1786-1792;

https://doi.org/10.1016/j.drudis.2020.06.030

Deng, Y.; Ma, J.; Weng, X.; Wang, Y.; Li, M.; Yang, T.; Dou, Z.; Yin, Z. and Shang, J.; (2021); Kaempferol-3-O-Glucuronide Ameliorates Non-Alcoholic Steatohepatitis in High-Cholesterol-Diet-Induced Larval Zebrafish and HepG2 Cell Models via Regulating Oxidation Stress; Life; 11(5); 445; https://doi.org/10.3390/life11050445

Dhanjal, J. K.; Kumar, V.; Garg, S.; Subramani, C.; Agarwal, S.; Wang, J.; Zhang, H.; Kaul, A.; Kalra, R. S.; Kaul, S. C.; Vrati, S.; Sundar, D. and Wadhwac, R.; (2021); Molecular mechanism of anti-SARS-CoV2 activity of Ashwagandha-derived withanolides; Int J Biol Macromol.; 184: 297–312; doi: 10.1016/j.ijbiomac.2021.06.015

Di Matteo, G.; Spano, M.; Grosso, M.; Salvo, A.; Ingallina, C.; Russo, M.; Ritieni, A. and Mannina, L.; (2020); Food and COVID-19: Preventive/Co-therapeutic Strategies Explored by Current Clinical Trials and in Silico Studies; Foods; 9(8); 1036; https://doi.org/10.3390/foods9081036

Diniz, L. R. L.; Elshabrawy, H. A.; Souza, M. T. S.; Duarte, A. B. S.; Datta, S. and de Sousa, D. P.; (2021); Catechins: Therapeutic Perspectives in COVID-19-Associated Acute Kidney Injury; Molecules.; 26(19):5951; doi: 10.3390/molecules26195951

Hossain, M. A.; Sohel, M.; Sultana, T.; Hasan, M. I.; Khan, M. S.; Kibria, K. M. K.; Mahmud, S. M. H.; Rahman, M. H.; (2023); Study of kaempferol in the treatment of COVID-19 combined with Chikungunya co-infection by network pharmacology and molecular docking technology; Informatics in Medicine Unlocked; 40:101289; https://doi.org/10.1016/j.imu.2023.101289

Hossain, R.; Mahmud, S.; Khalipha, A. B. R.; Saikat, A. S. M.; Dey, D.; Khan, R. A.; Rauf, A.; Wadood, A.; Rafique, H.; Bawazeer, S.; Khalil, A. A.; Almarhoon, Z. M.; Mabkhot, Y. N.; Alzahrani, K. J.; Islam, M. T.; Alsharif, K. F.; Khan, H.; (2023); Amentoflavone derivatives against SARS-CoV-2 main protease (MPRO): An in silico study; Journal: Main Group Chemistry; 22(2); 313-327; DOI: 10.3233/MGC-220077

Imran, M.; Thabet, H. K.; Alaqel, S. I.; Alzahrani, A. R.; Abida, A.; Alshammari, M. K.; Kamal, M.; Diwan, A,; Asdaq, S. M. B. and Alshehri, S.; (2022); The Therapeutic and Prophylactic Potential of Quercetin against COVID-19: An Outlook on the Clinical Studies, Inventive Compositions, and Patent Literature; Antioxidants; 11(5); 876; https://doi.org/10.3390/antiox11050876

Kim, S.; Hong, K. B.; Jo, K. and Suh, H. J.; (2021); Quercetin-3-O-glucuronide in the Ethanol Extract of Lotus Leaf (Nelumbo nucifera) Enhances Sleep Quantity and Quality in a Rodent Model via a GABAergic Mechanism; Molecules; 26(10); 3023; https://doi.org/10.3390/molecules26103023

Kim, Y. S.; Kim, B.; Kwon, E. B.; Chung, H. S. and Choi, J. G.; (2022); Mulberrofuran G, a Mulberry Component, Prevents SARS-CoV-2 Infection by Blocking the Interaction between SARS-CoV-2 Spike Protein S1 Receptor-Binding Domain and Human Angiotensin-Converting Enzyme 2 Receptor; Nutrients.; 14(19):4170; doi: 10.3390/nu14194170

Kim, Y. S.; Kwon, E. B.; Kim, B.; Chung, H. S.; Choi, G.; Kim, Y. H. and Choi, J. G.; (2022); Mulberry Component Kuwanon C Exerts Potent Therapeutic Efficacy In Vitro against COVID-19 by Blocking the SARS-CoV-2 Spike S1 RBD:ACE2 Receptor Interaction; Int. J. Mol.; 23(20); 12516;

https://doi.org/10.3390/ijms232012516

Kimura, H.; Kurusu, H.; Sada, M.; Kurai, D.; Murakami, K.; Kamitani, W.; Tomita, H.; Katayama, K.; Ryo, A.; (2020); Molecular pharmacology of ciclesonide against SARS-CoV-2; The Journal of Allergy and Clinical Immunology; 146(2); https://doi.org/10.1016/j.jaci.2020.05.029

Kuboyama, T.; Tohda, C.; Komatsu, K.; (2006); Withanoside IV and its active metabolite, sominone, attenuate Aβ(25–35)-induced neurodegeneration; European Journal of Neuroscience; 23(6):1417-26; https://doi.org/10.1111/j.1460-9568.2006.04664.x

Li, J.; Xiang, H.; Huang, C.; Lu, J.; (2021); Pharmacological Actions of Myricetin in the Nervous System: A Comprehensive Review of Preclinical Studies in Animals and Cell Models; Front. Pharmacol.; 12; https://doi.org/10.3389/fphar.2021.797298

Li, J.; Xu, D.; Wang, L.; Zhang, M.; Zhang, G.; Li, E. and He, S.; (2021); Glycyrrhizic Acid Inhibits SARS-CoV-2 Infection by Blocking Spike Protein-Mediated Cell Attachment; Molecules; 26(20):6090; https://doi.org/10.3390/molecules26206090

Maciorowski, D.; Idrissi, S. Z. E.; Gupta, Y.; Medernach, B. J.; Burns, M. B.; Becker, D. P.; Durvasula, R.; Kempaiah, P.; (2020); A Review of the Preclinical and Clinical Efficacy of Remdesivir, Hydroxychloroquine, and Lopinavir-Ritonavir Treatments against COVID-19; SLAS Discovery; 25(10); https://doi.org/10.1177/2472555220958385

Malin, J. J.; Suárez, I.; Priesner, V.; Fätkenheuer, G.; Rybniker, J.; (2020); Remdesivir against COVID-19 and Other Viral Diseases; Clinical Microbiology Reviews; 34(1); https://doi.org/10.1128/cmr.00162-20

Meeran, M. F. N.; Seenipandi, A.; Javed, H.; Sharma, C.; Hashiesh, H. M.; Goyal, S. N.; Jha, N. K.; Ojha, S.; (2021); Can limonene be a possible candidate for evaluation as an agent or adjuvant against infection, immunity, and inflammation in COVID-19?; Heliyon; 7(1):e05703;

https://doi.org/10.1016/j.heliyon.2020.e05703

Okamoto, S.; Ishihara, S.; Okamoto, T.; Doi, S.; Harui, K.; Higashino, Y.; Kawasaki, T.; Nakajima, N. and Saito, A.; (2014); Inhibitory Activity of Synthesized Acetylated Procyanidin B1 Analogs against HeLa S3 Cells Proliferation; Molecules; 19(2); 1775-1785; https://doi.org/10.3390/molecules19021775

Pasquereau, S.; Galais, M.; Bellefroid, M.; Angona, I. P.; Bizot, S. M.; Ismaili, L.; Lint, C. V. & Herbein, G.; (2022); Ferulic acid derivatives block coronaviruses HCoV-229E and SARS-CoV-2 replication in vitro; Sci Rep; 12:20309; https://doi.org/10.1038/s41598-022-24682-9

Rafiq, A.; Jabeen, T.; Aslam, S.; Ahmad, M.; Ashfaq, U. A.; Mohsin, N. A.; Zaki, M. E. A. and Al-Hussain, S. A.; (2023); A Comprehensive Update of Various Attempts by Medicinal Chemists to Combat COVID-19 through Natural Products; Molecules; 28(12); 4860; https://doi.org/10.3390/molecules28124860

Rizzuti, B.; Grande, F.; Conforti, F.; Alesanco, A. J.; Laita, L. C.; Alarcon, D. O.; Vega, S.; Reyburn, H. T.; Abian, O. and Campoy, A. V.; (2021); Rutin Is a Low Micromolar Inhibitor of SARS-CoV-2 Main Protease 3CLpro: Implications for Drug Design of Quercetin Analogs; Biomedicines.; 9(4):375; doi: 10.3390/biomedicines9040375

Salehi, B.; Fokou, P. V. T.; Rad, M. S.; Zucca, P.; Pezzani, R.; Martins, N. and Rad, J. S.; (2019); The Therapeutic Potential of Naringenin: A Review of Clinical Trials; Pharmaceuticals (Basel).; 12(1):11; doi: 10.3390/ph12010011

Sánchez, R. P.; Fragoso, J. M.; Muñoz, F. S.; Velasco, G. R.; Bello, J. R.; Reyes, A. L.; Gómez, L. E. M.; Fernández, C. S.; Reyna, T. R.; Zamarripa, N. E. R.; Martínez, G. R.; Ramos, J. Z. and Alarcón, G. V.; (2022); Association of the Transmembrane Serine Protease-2 (TMPRSS2) Polymorphisms with COVID-19; Viruses; 14(9); 1976; https://doi.org/10.3390/v14091976

Semmarath, W.; Mapoung, S.; Umsumarng, S.; Arjsri, P.; Srisawad, K.; Thippraphan, P.; Yodkeeree, S. and Dejkriengkraikul, P.; (2022); Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich Fraction of Black Rice Germ and Bran Suppresses Inflammatory Responses from SARS-CoV-2 Spike Glycoprotein S1-Induction In Vitro in A549 Lung Cells and THP-1 Macrophages via Inhibition of the NLRP3 Inflammasome Pathway; Nutrients; 14(13):2738;https://doi.org/10.3390/nu14132738

Singh, S.; Weiss, A.; Goodman, J.; Fisk, M.; Kulkarni, S.; Lu, I.; Gray, J.; Smith, R.; Sommer, M.; Cheriyan, J.; (2022); Niclosamide—A promising treatment for COVID-19; British Journal of Pharmacology; 179(13); 3250-3267; https://doi.org/10.1111/bph.15843

Souid, I.; Korchef, A.; Souid, S.; (2022); In silico evaluation of Vitis amurensis Rupr. Polyphenol compounds for their inhibition potency against COVID-19 main enzymes Mpro and RdRp; Saudi Pharmaceutical Journal; 30(5); 570-584; https://doi.org/10.1016/j.jsps.2022.02.014

Speciale, A.; Muscarà, C.; Molonia, M. S.; Cimino, F.; Saija, A.; Giofrè, S. V.; (2021); Silibinin as potential tool against SARS-Cov-2: In silico spike receptor-binding domain and main protease molecular docking analysis, and in vitro endothelial protective effects; Phytotherapy Research; 35(8); 4616-4625; https://doi.org/10.1002/ptr.7107

Uckun, F. M.; Saund, S.; Windlass, H.; Trieu, V.; (2021); Repurposing Anti-Malaria Phytomedicine Artemisinin as a COVID-19 Drug; Front. Pharmacol.; 12:649532;

https://doi.org/10.3389/fphar.2021.649532

Umar, H. I.; Siraj, B.; Ajayi, A.; Jimoh, T. O. and Chukwuemeka, P. O.; (2021); Molecular docking studies of some selected gallic acid derivatives against five non-structural proteins of novel coronavirus; J Genet Eng Biotechnol.; 19:16; doi: 10.1186/s43141-021-00120-7

Vardhan, S. and Sahoo, S. K.; (2022); Computational studies on the interaction of SARS-CoV-2 Omicron SGp RBD with human receptor ACE2, limonin and glycyrrhizic acid; Computers in Biology and Medicine; 144:105367; doi: 10.1016/j.compbiomed.2022.105367

Wang, Y.; Tang, C.; Zhang, H.; (2015); Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice; Journal of Food and Drug Analysis; 23(2); 310-317; https://doi.org/10.1016/j.jfda.2014.10.002

Wang, Y.; Wu, S.; Li, Q; Lang, W.; Li, W.; Jiang, X.; Wan, Z.; Chen, J.; Wang, H.; (2022); Epigallocatechin-3-gallate: A phytochemical as a promising drug candidate for the treatment of Parkinson’s disease; Front. Pharmacol.; 13; https://doi.org/10.3389/fphar.2022.977521

Zhang, X. Y.; Huang, H. J.; Zhuang, D. L.; Nasser, M. I.; Yang, M. H.; Zhu, P. & Zhao, M. Y.; (2020); Biological, clinical and epidemiological features of COVID-19, SARS and MERS and AutoDock simulation of ACE2; Infectious Diseases of Poverty; 9(99); https://doi.org/10.1186/s40249-020-00691-6

Most read articles by the same author(s)

1 2 3 > >>