A Comprehensive Review of Water Treatment Methods for Heavy Metal Ion Removal from Wastewater

Main Article Content

Ravish Singh Rajput
Ashutosh Singh
Manoj Kumar Mishra

Abstract

Wastewater pollution with heavy metals presents serious problems with not only environmental integrity but also human health safety. This review is a complete review that includes different removal methods and technologies for heavy metals from wastewater and proceeds to include the traditional techniques as well as the advanced ones. The traditional techniques such as chemical precipitation, ion exchange, adsorption, membrane filtration, coagulation, and flocculation along with their effectiveness and some of the pitfalls are provided in this discussion. Moreover, the developments of the past years such as nanotechnology, electrochemical methods, hybrid systems, and biological treatments are further outlined as ways to improve treatment outcomes and lower the environmental impact. Efficiency of treatments factors including the pH, temperature, metal concentration, the reactor design, operation parameters, and costs considerations are critically examined to provide ideas into how to improve the performance of the treatments. By means of the combination of state-of-the-art technologies and treated-liquid effectiveness components, this review seeks to supply information for the betterment of heavy metals removal in wastewater treatment, and as such give a cleaner and healthier surrounding to the future generations.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ravish Singh Rajput, Ashutosh Singh, & Manoj Kumar Mishra. (2023). A Comprehensive Review of Water Treatment Methods for Heavy Metal Ion Removal from Wastewater. Journal of Advanced Zoology, 44(5), 1508–1519. https://doi.org/10.53555/jaz.v45i3.4505
Section
Articles
Author Biographies

Ravish Singh Rajput

Rajkiya Engineering College, Kannauj, U.P.,India

Ashutosh Singh

Goyal Institute of Engineering and Technology , Lucknow,U.P., India

Manoj Kumar Mishra

Sri LBS Degree College, Gonda ,U.P. , India

References

Demiral İ, Samdan C, Demiral H. Enrichment of the surface functional groups of activated carbon by modification method. Surf. Interfaces. 2021;22:100873. doi:10.1016/j.surfin.2021.100873.

Bisht R, Agarwal M, Singh K. Methodologies for removal of heavy metal ions from wastewater: an overview. Interdiscip Environ Rev. 2017;18:124-142. doi:10.1504/IER.2017.10008828.

Qasem NAA, Mohammed RH, Lawal DU. Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water. 2021;4:36. doi:10.1038/s41545-021-00127-0.

El-Sherif IY, Tolani S, Ofosu K, Mohamed OA, Wanekaya AK. Polymeric nanofibers for the removal of Cr(III) from tannery waste water. J Environ Manag. 2013;129:410-413. doi:10.1016/j.jenvman.2013.07.042.

Zou Y, Wang X, Khan A, Wang P, Wang X. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol. 2016;50:7290-7304. doi:10.1021/acs.est.6b01314.

Tjandraatmadja G, Morawska L, Ristovski Z, et al. Sources of critical contaminants in domestic wastewater: contaminant contribution from household products. 2008.

Taseidifar M, Makavipour F, Pashley RM, Rahman AFMM. Removal of heavy metal ions from water using ion flotation. Environ Technol Innov. 2017;8:182-190. doi:10.1016/j.eti.2017.09.006.

García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol. 2014;69:182-201. doi:10.1016/j.fct.2014.03.018.

Borba CE, Guirardello R, Silva EA, Veit MT, Tavares CRG. Removal of nickel(II) ions from aqueous solution by biosorption in a fixed bed column: Experimental and theoretical breakthrough curves. Biochem Eng J. 2006;30:184-191. doi:10.1016/j.bej.2006.02.001.

Yang X, Hu J, Liu S, Liang X, Wang X. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J. 2019;366:608-621. doi:10.1016/j.cej.2019.02.169.

Karnib M, Kabbani A, Holail H, Olama Z. Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia. 2014;50:113-120. doi:10.1016/j.egypro.2014.06.015.

Krishna Kumar AS, Jiang SJ, Tseng WL. Effective adsorption of chromium(vi)/Cr(iii) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. J Mater Chem A. 2015;3:7044-7057. doi:10.1039/c4ta06727b.

Duan C, Ma T, Wang J, Zhou Y. Removal of heavy metals from aqueous solution using carbon-based adsorbents: a review. J Water Process Eng. 2020;37:101339. doi:10.1016/j.jwpe.2020.101339.

Marciniak M, Goscianska J, Frankowski M, Pietrzak R. Optimal synthesis of oxidized mesoporous carbons for the adsorption of heavy metal ions. J Mol Liq. 2019;276:630-637. doi:10.1016/j.molliq.2018.11.059.

Owalude SO, Tella AC. Removal of hexavalent chromium from aqueous solutions by adsorption on modified groundnut hull. Beni-Suef Univ J Basic Appl Sci. 2016;5:377-388. doi:10.1016/j.bjbas.2016.07.001.

Ngah WSW, Fatinathan S. Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chem Eng J. 2008;143:62-72. doi:10.1016/j.cej.2007.12.006.

Upadhyay U, Sreedhar I, Singh SA, Patel CM, Anitha KL. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr Polym. 2021;251:117000. doi:10.1016/j.carbpol.2020.117000.

Vakili M, Rafatullah M, Ibrahim MH, Abdullah AZ, Amouzgar P. Novel crosslinked chitosan for enhanced adsorption of hexavalent chromium in acidic solution. Chem Eng J. 2018;347:782-90. doi:10.1016/j.cej.2018.04.010.

Mohammadzadeh Pakdel P, Peighambardoust SJ. Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr Polym. 2018;201:264-279. doi:10.1016/j.carbpol.2018.08.098.

Refaat Alawady A, Ali Alshahrani A, Ali Aouak T, Mohamed Alandis N. Polysulfone membranes with CNTs/Chitosan biopolymer nanocomposite as selective layer for remarkable heavy metal ions rejection capacity. Chem Eng J. 2020;388:124267. doi:10.1016/j.cej.2019.124267.

Kazemi E, Dadfarnia S, Haji Shabani AM, Ranjbar M. Synthesis, characterization, and application of a Zn (II)-imprinted polymer grafted on graphene oxide/magnetic chitosan nanocomposite for selective extraction of zinc ions from different food samples. Food Chem. 2017;237:921-928. doi:10.1016/j.foodchem.2017.06.075.

Liu L, Liu Y, Liu Y, Zhou Y, Kong D, Zhou H. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta. 2012;93:350-357. doi:10.1016/j.talanta.2012.01.044.

Li Y, Li L, Yu J. Applications of zeolites in sustainable. Chem. Chem. 2017;3:928-949. doi:10.1039/c7gc00009b.

Zhang T, Jin X, Li Z, et al. Removal of heavy metals and dyes by clay-based adsorbents: from natural clays to 1D and 2D nano-composites. Chem Eng J. Published online November 2020:127574. doi:10.1016/j.cej.2020.127574.

US Environmental Protection Agency. 2018 Edition of the Drinking Water Standards and Health Advisories Tables. Office of Water, U.S. Environmental Protection Agency; 2018.

World Health Organization. Guidelines for Drinking Water Quality. 4th ed. World Health Organization; 2017.

United Nations. United Nations Guide to the Globally Harmonized System of Classification and Labeling of Chemicals (ghs). United Nations; 2015:90.

Hanjra MA, Blackwell J, Carr G, Zhang FH, Jackson TM. Wastewater irrigation and environmental health: Implications for water governance and public policy. Int J Hyg Environ Health. 2012;215:255-269. doi:10.1016/j.ijheh.2011.10.003.

Scheierling SM, Bartone CR, Mara DD, Drechsel P. Toward an agenda for improving wastewater use in agriculture. Water Int. 2011;36:20. doi:10.1080/02508060.2011.594527.

Santhosh C., Velmurugan V., Jacob G., Jeong S.K., Grace A.N., Bhatnagar A. Role of nanomaterials in water treatment applications: A review. Chem. Eng. J. 2016;306:1116–1137. doi: 10.1016/j.cej.2016.08.053.

Favier L, Harja M, Simion AI, Rusu L, Kadmi Y, Pacala ML, Bouzaza A. Advanced oxidation process for the removal of chlorinated phenols in aqueous suspensions. J Environ Prot Ecol. 2016;17:10.

Ardeleanu MN, Popescu IN, Udroiu IN, Diaconu EM, Mihai S, Lungu E, et al. Novel pdms-based sensor system for mpwm measurements of picoliter volumes in microfluidic devices. Sensors. 2019;19:4886. doi: 10.3390/s19224886.

Predescu AM, Matei E, Berbecaru AC, Pantilimon C, Dragan C, Vidu R, et al. Synthesis and characterization of dextran-coated iron oxide nanoparticles. R Soc Open Sci. 2018. doi: 10.1098/rsos.171525.

Babel S, del Mundo Dacera D. Heavy metal removal from contaminated sludge for land application: A review. Waste Manag. 2006;26:988–1004. doi: 10.1016/j.wasman.2005.09.017.

Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J Hazard Mater. 2012;211-212:317–331. doi: 10.1016/j.jhazmat.2011.10.016.

Renu, Agarwal M, Singh K. Heavy metal removal from wastewater using various adsorbents: A review. J Water Reuse Desalin. 2016;7:387–419. doi: 10.2166/wrd.2016.104.

Chen QY, Luo Z, Hills C, Xue G, Tyrer M. Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide. Water Res. 2009;43:2605–2614. doi: 10.1016/j.watres.2009.03.007.

Tünay O, Kabdaşli NI. Hydroxide precipitation of complexed metals. Water Res. 1994;28:2117–2124. doi: 10.1016/0043-1354(94)90022-1.

Gorny J, Billon G, Noiriel C, Dumoulin D, Lesven L, Made B. Chromium behavior in aquatic environments: A review. Environ Rev. 2016;24:503–516. doi: 10.1139/er-2016-0012.

Bhattacharyya D, Jumawan AB, Grieves RB. Separation of toxic heavy metals by sulfide precipitation. Sep Sci Technol. 1979;14:441–452. doi: 10.1080/01496397908058096.

Monea MC, Löhr DK, Meyer C, Preyl V, Xiao J, Steinmetz H, et al. Comparing the leaching behavior of phosphorus, aluminum and iron from post-precipitated tertiary sludge and anaerobically digested sewage sludge aiming at phosphorus recovery. J Clean Prod. 2020;247:119129. doi: 10.1016/j.jclepro.2019.119129.

Monea MC, Meyer C, Steinmetz H, Schönberger H, Drenkova-Tuhtan A. Phosphorus recovery from sewage sludge – phosphorus leaching behavior from aluminum-containing tertiary and anaerobically digested sludge. Water Sci Technol. 2020. doi: 10.2166/wst.2020.414.

EPA. Innovative and Alternative Technology Assessment Manual. Agency, E.P.; Washington, DC, USA: 1980. EPA 430/9-78-009.

Gonzalez-Munoz MJ, Rodriguez MA, Luque S, Alvarez JR. Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration. Desalination. 2006;200:742–744. doi: 10.1016/j.desal.2006.03.498.

Kumar P, Pournara A, Kim K-H, Bansal V, Rapti S, Manos MJ. Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications. Prog Mater Sci. 2017. doi: 10.1016/j.pmatsci.2017.01.002.

Hoch LB, Mack EJ, Hydutsky BW, Hershman JM, Skluzacek IM, Mallouk TE. Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environ Sci Technol. 2008;42:2600–2605. doi: 10.1021/es702589u.

Naja G, Volesky B. Heavy Metals in the Environment. Springer Nature; Cham, Switzerland: 2009. Toxicity and sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment; pp. 13–61.

Narayani M, Shetty KV. Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: A review. Crit Rev Environ Sci Technol. 2013;43:955–1009. doi: 10.1080/10643389.2011.627022.

Sarkar B. Heavy Metals in the Environment. CRC Press; Boca Raton, FL, USA: 2002.

Tonini DR, Gauvin DA, Soffel RW, Freeman WP. Achieving low mercury concentrations in chlor-alkah wastewaters. Environ Prog. 2003;22:167–173. doi: 10.1002/ep.670220314.

Zagorodni A. Ion exchange Materials: Properties and Applications: Properties and Applications. Elsevier; Amsterdam, The Netherlands: 2006.

Fan QH, Li Z, Zhao HG, Jia ZH, Xu JZ, Wu WS. Adsorption of pb(ii) on palygorskite from aqueous solution: Effects of ph, ionic strength and temperature. Appl Clay Sci. 2009;45:111–116. doi: 10.1016/j.clay.2009.04.009.

Application of the Ion Exchange Process for the Treatment of Radioactive Waste and Management of Spent Ion Exchangers. International Atomic Energy Agency; Vienna, Austria: 2002.

Bortun AI, Bortun LN, Clearfield A. Evaluation of synthetic inorganic ion exchangers for cesium and strontium removal from contaminated groundwater and wastewater. Solvent Extr Ion Exch. 1997;15:909–929. doi: 10.1080/07366299708934513.

Ahmad WA, Ahmad WHW, Karim NA, Raj AS, Zakaria ZA. Cr (VI) reduction in naturally rich growth medium and sugarcane bagasse by Acinetobacter haemolyticus. International Biodeterioration and Biodegradation. 2013;85:571–576.

Aldrich C, Feng D. Removal of heavy metals from wastewater effluents by biosorptive flotation. Minerals Engineering. 2000;13(10):1129–1138.

Al-Othman ZA, Ali R, Naushad M. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chemical Engineering Journal. 2012;184:238–247.

Al-Rashdi B.A.M., Johnson D.J., Hilal N. Removal of heavy metal ions by nanofiltration. Desalination. 2013;315:2–17.

Alvarez MT, Crespo C, Mattiasson B. Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids. Chemosphere. 2007;66(9):1677–1683.

Anirudhan TS, Sreekumari SS. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut button. Journal of Environmental Sciences. 2011;23(12):1989–1998.

Argun ME, Dursun S, Ozdemir C, Karatas M. Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. Journal of Hazardous Materials. 2007;141(1):77–85.

Assaad E, Azzouz A, Nistor D, Ursu AV, Sajin T, Miron DN, Hausler R. Metal removal through synergic coagulation–flocculation using an optimized chitosan-montmorillonite system. Applied Clay Science. 2007;37(3):258–274.

Azabou S, Mechichi T, Sayadi S. Zinc precipitation by heavy-metal tolerant sulphate-reducing bacteria enriched on phosphogypsum as a sulphate source. Minerals Engineering. 2007;20(2):173–178.

Bansal RP, Donnet JP, Stoeckli F. Active Carbon. Marcel Dekker Inc.; New York, USA, 1988.

Beveridge TJ, Murray RG. Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of Bacteriology. 1980;141(2):876–887.

Bilal M, Shah JA, Ashfaq T, Gardazi SMH, Tahir AA, Pervez A, Mahmood Q. Waste biomass adsorbents for copper removal from industrial wastewater – a review. Journal of Hazardous Materials. 2013;263:322–333.

Blöcher C, Dorda J, Mavrov V, Chmiel H, Lazaridis NK, Matis KA. Hybrid flotation-membrane filtration process for the removal of heavy metal ions from wastewater. Water Research. 2003;37(16):4018–4026.

Bohli T, Ouederni A, Fiol N, Villaescusa I. Evaluation of an activated carbon from olive stones used as an adsorbent for heavy metal removal from aqueous phases. Comptes Rendus Chimie. 2015;18(1):88–99.

Camarillo R, Pérez Á, Cañizares P, De Lucas A. Removal of heavy metal ions by polymer enhanced ultrafiltration: batch process modeling and thermodynamics of complexation reactions. Desalination. 2012;286:193–199.

Carro L, Barriada JL, Herrero R, De Vicente MES. Interaction of heavy metals with Ca-pretreated Sargassum muticum algal biomass: characterization as a cation exchange process. Chemical Engineering Journal. 2015;264:181–187.

Chaturvedi SI. Electrocoagulation: a novel wastewater treatment method. International Journal of Modern Engineering Research. 2013;3(1):93–100.

Chen Q, Luo Z, Hills C, Xue G, Tyrer M. Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide. Water Research. 2009;43(10):2605–2614.

Cronje KJ, Chetty K, Carsky M, Sahu JN, Meikap BC. Optimization of chromium (VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination. 2011;275(1):276–284.

Daraei H, Mittal A, Noorisepehr M, Mittal J. Separation of chromium from water samples using eggshell powder as a low-cost sorbent: kinetic and thermodynamic studies. Desalination and Water Treatment. 2015;53(1):214–220.

Dave PN, Pandey N, Thomas H. Adsorption of Cr (VI) from aqueous solutions on tea waste and coconut husk. Indian Journal of Chemical Technology. 2012;1(2):111–117.

Demirbas A. Heavy metal adsorption onto agro-based waste materials: a review. Journal of Hazardous Materials. 2008;157(2):220–229.

Dialynas E, Diamadopoulos E. Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination. 2009;238(1):302–311.

Djedidi Z, Bouda M, Souissi MA, Cheikh RB, Mercier G, Tyagi RD, Blais JF. Metals removal from soil, fly ash and sewage sludge leachates by precipitation and dewatering properties of the generated sludge. Journal of Hazardous Materials. 2009;172(2):1372–1382.

Dorfner K (Ed). Ion Exchangers. Walter de Gruyter. Dupont A. Lime treatment of liquid waste containing heavy metals, radio nuclides and organics. Hazardous Materials Control.