Molecular Docking And Visualization Of Selected Phytochemicals For Using Software Autodock Vina And Pymol

Main Article Content

Haseera. N
Baskaran. K
Nirmala Devi.N

Abstract

The accurate prediction of protein−ligand binding affinity is a central challenge in computational chemistry and insilico drug discovery. The free energy perturbation (FEP) method based on molecular dynamics (MD) simulation provides accurate results only if a reliable structure is available via high-resolution X-ray crystallography. To overcome the limitation, we propose a sequential prediction protocol using generalized replica exchange with solute tempering AutoDock Vina and PyMOL. At first, ligand binding poses are predicted using PyMOL, which weakens protein−ligand interactions at high temperatures to multiple binding poses. To avoid ligand dissociation at high temperatures, a flat-bottom restraint potential centered on the binding site is applied in the simulation. The binding affinity of the most reliable pose is then calculated using FEP. The protocol is applied to the bindings of ten ligands to FK506 binding proteins AutoDock Vina showing the excellent agreement between the calculated and experimental binding affinities. The present protocol, which is referred to as the AutoDock Vina and PyMOL method, would help to predict the binding affinities without high-resolution structural information on the ligand-bound state.

Downloads

Download data is not yet available.

Article Details

How to Cite
Haseera. N, Baskaran. K, & Nirmala Devi.N. (2023). Molecular Docking And Visualization Of Selected Phytochemicals For Using Software Autodock Vina And Pymol. Journal of Advanced Zoology, 44(5), 1460–1473. https://doi.org/10.53555/jaz.v44i5.4432
Section
Articles
Author Biographies

Haseera. N

Department of Biochemistry, Sree Narayana Guru College, Coimbatore, Tamilnadu, India.

Baskaran. K

MSC, M.Phil., Ph.D. Assistant Professor, Department of Biochemistry, Sree Narayana Gure College, Coimbatore-641105, Tamil Nādu, India, Cell number: 91+8760302579

Nirmala Devi.N

Department of Biochemistry, Sree Narayana Guru College, Coimbatore, Tamilnadu, India

References

Lim, N. M.; Wang, L.; Abel, R.; Mobley, D. L. Sensitivity in Binding Free Energies Due to Protein Reorganization. J. Chem. Theory Comput. 2016, 12, 4620−4631.

Gallicchio, E.; Lapelosa, M.; Levy, R. M. Binding Energy Distribution Analysis Method (BEDAM) for Estimation of Protein- Ligand Binding Affinities. J. Chem. Theory Comput. 2010, 6, 2961− 2977.

Araki, M.; Kamiya, N.; Sato, M.; Nakatsui, M.; Hirokawa, T.; Okuno, Y. The Effect of Conformational Flexibility on Binding Free Energy Estimation between Kinases and Their Inhibitors. J. Chem. Inf. Model. 2016, 56, 2445−2456.

Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol. 1997, 267, 727−748.

Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 1639−1662.

Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739− 1749.

L. L.; Pollard, W. T.; Banks, J. L. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004, 47, 1750−1759.

Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes. J. Med. Chem. 2006, 49, 6177−6196.

Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, 31, 455−461.

Allen, W. J.; Balius, T. E.; Mukherjee, S.; Brozell, S. R.; Moustakas, D. T.; Lang, P. T.; Case, D. A.; Kuntz, I. D.; Rizzo, R. C. DOCK 6: Impact of New Features and Current Docking Performance. J. Comput. Chem. 2015, 36, 1132−1156.

Warren, G. L.; Andrews, C. W.; Capelli, A.-M.; Clarke, B.; LaLonde, J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger, S.; Tedesco, G.; Wall, I. D.; Woolven, J. M.; Peishoff, C. E.; Head, M. S. A Critical Assessment of Docking Programs and Scoring Functions. J. Med. Chem. 2006, 49, 5912−5931.

Mobley, D. L.; Liu, S.; Lim, N. M.; Wymer, K. L.; Perryman, A. L.; Forli, S.; Deng, N.; Su, J.; Branson, K.; Olson, A. J. Blind Prediction of HIV Integrase Binding from the SAMPL4 Challenge. J. Comput.-Aided Mol. Des. 2014, 28, 327−345.

Aldeghi, M.; Heifetz, A.; Bodkin, M. J.; Knapp, S.; Biggin, P. C. Accurate Calculation of the Absolute Free Energy of Binding for Drug Molecules. Chem. Sci. 2016, 7, 207−218.

Gaieb, Z.; Parks, C. D.; Chiu, M.; Yang, H.; Shao, C.; Walters, W. P.; Lambert, M. H.; Nevins, N.; Bembenek, S. D.; Ameriks, M. K.; Mirzadegan, T.; Burley, S. K.; Amaro, R. E.; Gilson, M. K. D3R Grand Challenge 3: Blind Prediction of Protein−Ligand Poses and Affinity Rankings. J. Comput.-Aided Mol. Des. 2019, 33, 1−18.