New Approaches to Improve the Intranasal Absorption of Insulin

Main Article Content

Subhendu S. Mishra
Shweta Shivshankar Suman
Kalpana Singh
Prabhat Jain

Abstract

Insulin is essential for type 1 and advanced type 2 diabetics to maintain blood glucose levels and prolong lives. Due to its large molecular weight and short half-life, it has been usually administered subcutaneously accompanied with side effects such as the possibility of hypoglycemia episodes, weight gain, pain, local tissue necrosis, infection, nerve damage and inadequate post meal glucose control. In order to overcome these limitations, alternative delivery routes of insulin are expected to provide better safety and compliance for the patient. Non-invasive insulin delivery system represents one of the most challenging goals for pharmaceutical industry. Nasal insulin delivery has been extensively studied as an alternative to subcutaneous injection for the treatment of diabetes. The pharmacokinetic profile of nasal insulin is similar to that obtained by intravenous injection. Nasal drug administration has been used as an alternative route for the local or systemic availability of drugs restricted to intravenous administration. This is due to the large surface area, porous endothelial membrane, high total blood flow, the avoidance of first-pass metabolism and ready accessibility. The nasal administration of drugs, including numerous compound, peptide and protein drugs, for systemic medication has been widely investigated in recent years. Drugs are cleared rapidly from the nasal cavity after intranasal administration, resulting in rapid systemic drug absorption. This review describes the main barriers preventing nasal insulin absorption and special attention is given to new approaches to improve the intranasal absorption of insulin, including the application of new safe absorption enhancers and the use of appropriate delivery systems. It seems that bioadhesive delivery systems or water-insoluble powders with absorption enhancers are the most promising methods for intranasal delivery of insulin.

Downloads

Download data is not yet available.

Article Details

How to Cite
Subhendu S. Mishra, Shweta Shivshankar Suman, Kalpana Singh, & Prabhat Jain. (2024). New Approaches to Improve the Intranasal Absorption of Insulin. Journal of Advanced Zoology, 45(2), 1518–1526. https://doi.org/10.53555/jaz.v45i2.4411
Section
Articles
Author Biographies

Subhendu S. Mishra

Principal, Usha College of Pharmacy, Seraikella, Jharkhand.  Ph-+919078171653

Shweta Shivshankar Suman

St. Wilfred’s Institute of Pharmacy, Panvel, Navi Mumbai, Maharashtra.

Kalpana Singh

Department of Zoology, Govt. College, Pushprajgarh, Anooppur, Madhya Pradesh.

Prabhat Jain

Scan Research Laboratory, Indrapuri, Bhopal, Madhya Pradesh.

References

M. A. Atkinson and G. S. Eisenbarth, Lancet, 2001, 358, 221–229.

M. Stumvoll, B. J. Goldstein and T. W. van Haeften, Lancet, 2005, 365, 1333–1346.

J. Shaw, R. Sicree and P. Zimmet, Diabetes Res. Clin. Pract., 2010, 87, 4–14.

International Diabetes Federation, 2013, http://www.idf. org/diabetesatlas.

A. D. Association, Diabetes Care, 2013, 36, S67–S74.

D. R. Owens, B. Zinman and G. B. Bolli, Lancet, 2001, 358, 739–746.

R. A. Hayward, W. G. Manning, S. H. Kaplan, E. H. Wagner and S. Greenfield, JAMA, J. Am. Med. Assoc., 1997, 278, 1663–1669.

P. Raskin, E. Allen, P. Hollander, A. Lewin, R. A. Gabbay, P. Hu, B. Bode and A. Garber, Diabetes Care, 2005, 28, 260–265.

M. Hamaty, Cleveland Clin. J. Med., 2011, 78, 332–342.

T. Richardson and D. Kerr, Am. J. Clin. Dermatol., 2003, 4, 661–667.

K. Buza´si, Z. Sa´pi and G. Jermendy, Diabetes Res. Clin. Pract., 2011, 94, e34–e36.

E. Chantelau, M. Spraul, I. Mu¨hlhauser, R. Gause and M. Berger, Diabetologia, 1989, 32, 421–426.

D. R. Owens, Nat. Rev. Drug Discovery, 2002, 1, 529–540.

K. M. Bratlie, R. L. York, M. A. Invernale, R. Langer and D. G. Anderson, Adv. Healthcare Mater., 2012, 1, 267–284.

N. Jeandidier and S. Boivin, Adv. Drug Delivery Rev., 1999, 35, 179–198.

W. Wu and S. Zhou, Macromol. Biosci., 2013, 13, 1464–1477.

V. Ravaine, C. Ancla and B. Catargi, J. Controlled Release, 2008, 132, 2–11.

L. Heinemann, A. Pfutzner and T. Heise, Curr. Pharm. Des., 2001, 7, 1327–1351.

E.-S. Khafagy, M. Morishita, Y. Onuki and K. Takayama, Adv. Drug Delivery Rev., 2007, 59, 1521–1546.

G. Steil, A. Panteleon and K. Rebrin, Adv. Drug Delivery Rev., 2004, 56, 125–144.

Henkin, R.I. (2010) Inhaled insulin-intrapulmonary, intranasal, and other routes of administration: mechanisms of action. Nutrition 26, 33-39.

Kissel T, Werner U. Nasal delivery of peptides: an in vitro cell culture model for the investigation of transport and metabolism in human nasal epithelium. J Control Rel 1998; 53: 195–203.

Ridley D, Perkins AC, Washington N, Wilson CG, Wastie ML, Flynn PO et al. The effect of posture on nasal clearance of bioadhesive starch microspheres. S.T.P. Pharma Sci 1995; 5: 442– 6.

Illum L. Drug delivery systems for nasal application. In: Hıncal AA, Kas HS, Sumnu M, editors. Third International Pharmaceutical Technology Symposium [Proceedings]. Ankara: Meteksan, 1985.

Sarkar MA. Drug metabolism in the nasal mucosa. Pharm Res 1992; 9: 1–9.

Ugwoke, M.I.; Verbeke, N.; Kinget, R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J. Pharm. Pharmacol. 2001, 53, 3-21.

Behl, C.R.; Pimplaskar, H.K.; Sileno, A.P.; deMeireles, J.; Romeo, V.D. Effects of physicochemical properties and other factors on systemic nasal drug delivery. Adv. Drug Deliv. Rev. 1998, 29, 89-116.

Arora, P.; Sharma, S.; Garg, S. Permeability issues in nasal drug delivery. Drug Discov. Today 2002, 7, 967-975.

Cornaz, A.L.; Buri, P. Nasal Mucosa as an Absorption Barrier. Eur. J. Pharm. Biopharm. 1994, 40, 261-270.

Jones, N. The Nose and paranasal sinuses physiology and anatomy. Adv. Drug Deliv. Rev. 2001, 51, 5-19.

Sciarra, J.J. Remington: The Science and Practice of Pharmacy; Gennaro, A.R., Ed.; Mack Publishing Company: Easton, PA, USA, 1995; Chapter 95, p. 1676.

Sanders, P.; Washington, N.; Frier, M.; Wilson, C.G.; Feely, L.C.; Washington, C. The deposition of solution-based and suspension-based aerosols from metered dose inhalers in healthy subjects and asthmatic patients. S.T.P. Pharm. Sci. 1997, 7, 300-306.

Schipper, N.G.; Verhoef, J.C.; Merkus, F.W. The nasal mucociliary clearance: Relevance to nasal drug delivery. Pharm. Res. 1991, 8, 807-814.

Ingemann, M.; Frokjaer, S.; Hovgaard, L.; Brøndsted, H. Peptide and Protein Drug Delivery Systems for Non-Parenteral Routes of Administration. In Pharmaceutical Formulation Development of Peptides and Proteins; Frokjaer, S., Hovgaard, L., Eds.; Taylor & Francis: Philadelphia, PA, USA, 2000; Chapter 10, p.189.

Wermeling, D.P.; Miller, J.L. Intranasal Drug Delivery. In Modified Release Drug Delivery Technology; Rathbone, M.J., Hadgraft, J., Roberts, M.S., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2002; Chapter 61, p. 727.

Ungell, A.L.; Andreasson, A.; Lundin, K.; Utter, L. Effects of enzymatic inhibition and increased paracellular shunting on transport of vasopressin analogues in the rat. J. Pharm. Sci. 1992, 81, 640-645.

Corbo, D.C.; Liu, J.C.; Chien, Y.W. Drug absorption through mucosal membranes: Effect of mucosal route and penetrant hydrophilicity. Pharm. Res. 1989, 6, 848-852.

McMartin, C.; Hutchinson, L.E.; Hyde, R.; Peters, G.E. Analysis of structural requirements for the absorption of drugs and macromolecules from the nasal cavity. J. Pharm. Sci. 1987, 76, 535-540.

Tuma, P.L.; Hubbard, L. Transcytosis: Crossing cellular barriers. Physiol. Rev. 2003, 83, 871-932.

Illum, L. Nasal Drug delivery-possibilities, problems and solutions. J. Control. Release 2003, 87, 187-198.

Hussain, A.A. Intranasal drug delivery. Adv. Drug Deliv. Rev. 1998, 29, 39-49.

O’Hagan, D.T.; Illum, L. Absorption of peptides and proteins from the respiratory tract and the potential for development of locally administered vaccine. Crit. Rev. Ther. Drug Carrier Syst. 1990, 7, 35-97.

Irwin, W.J.; Dwivedi, A.K.; Holbrook, P.A.; Dey, M.J. The Effect of cyclodextrins on the stability of peptides in nasal enzymic systems. Pharm. Res. 1994, 11, 1698-1703.

Morita, T.; Yamahara, H. Encyclopedia of Pharmaceutical Technology, 3rd ed.; Swarbrick, J., Ed.; Informa Healthcare: London, UK, 2007; Vol. 4, p. 2678.

Stolnic, S.; Shakesheff, K. Formulation for delivery the therapeutics proteins. Biotechnol. Lett. 2009, 31, 1-11.

Romeo, V.D.; deMeireles, J.C.; Gries, W.J.; Xia, W.J.; Sileno, A.P.; Pimplaskar, H.K.; Behl, C.R. Optimization of systemic nasal drug delivery with pharmaceutical excipients. Adv. Drug Deliv. Rev. 1998, 29, 117-133.

Yıldız Ozsoy , Sevgi Gungor and Erdal Cevher. Nasal Delivery of High Molecular Weight Drugs. Molecules 2009, 14, 3754-3779.

McGinity, J.W.; O’Donnell, P.B. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Deliv. Rev. 1997, 28, 25-42.

Rajaonarivony, M.; Vauthier, C.; Couarraze, G.; Puisieux. F.; Couvreur, P. Development of a new drug carrier made from alginate. J. Pharm. Sci. 1993, 82, 912-917.

Chowdary, K.P.; Rao, Y.S. Mucoadhesive microspheres for controlled drug delivery. Biol. Pharm. Bull. 2004, 27, 1717-1724.

Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release 2004, 100, 5-28.

Ozsoy Y. In Handbook of Particulate Drug Delivery; Kumar, M.N.V.R., Ed.; American Scientific Publisher: Stevenson Ranch, CA, USA, 2008; Vol. 2, Chapter 8, p.143.

van der Lubben, I.M,; Verhoef, J.C.; Borchard, G.; Junginger, H.E. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur. J. Pharm. Sci. 2001, 14, 201-207.

Wong, T.W. Chitosan and its use in design of insulin delivery system. Recent Pat. Drug Deliv. Formul. 2009, 3, 8-25.

Henriksen, I.; Green, K.L.; Smart, J.D.; Smistad, G.; Karlsen, J. Bioadhesion of hydrated chitosan: An in vitro and in vivo study. Int. J. Pharm. 1996, 145, 231-240.

Schipper, N.G.; Olsson, S.; Hoogstraate, J.A.; deBoer, A.G.; Varum, K.M.; Artursson, P. Chitosans as absorption enhancers for poorly absorbable drugs 2: Mechanism of absorption enhancement. Pharm. Res. 1997, 14, 923-929.

Lehr, C.M.; Bouwstra, J.A.; Schacht, E.H.; Junginger, H.E. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int. J. Pharm. 1992, 78, 43-48.

Artursson, P.; Lindmark, T.; Davis, S.S.; Illum, L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res. 1994, 11, 1358-1361.

Alpar, H.O.; Eyles, J.E.; Williamson, E.D.; Somavarapu, S. Intranasal vaccination against plague, tetanus and diphtheria. Adv. Drug Deliv. Rev. 2001, 51, 173-201.

Vila, A.; Sánchez, A.; Tobío, M.; Calvo, P.; Alonso, M.J. Design of biodegradable particles for protein delivery. J. Control. Release 2002, 78, 15-24.

Vila, A.; Sánchez, A.; Evora, C.; Soriano, I.; Vila Jato, J.L.; Alonso, M.J. PEG-PLA nanoparticles as carriers for nasal vaccine delivery. J. Aerosol. Med. 2004, 17, 174-185.

Farraj, N.F.; Johansen, B.R.; Davis, SS.; Illum, L. Nasal administration of insulin using bioadhesive microspheres as a delivery system. J. Control. Release 1990, 13, 253-261.

Björk, E.; Edman, P. Characterization of degradable starch microspheres as a nasal delivery system for drugs. Int. J. Pharm. 1990, 62, 187-192.

Edman, P.; Björk, E.; Ryden, L. Microspheres as a nasal delivery system for peptide drugs. J. Control. Release 1992, 21, 165-172.

Callens, C.; Remon, J.P. Evaluation of starch-maltodextrin-carbopol 974 P mixtures for the nasal delivery of insulin in rabbits. J. Control. Release 2000, 66, 215-220.

Illum, L.; Fisher, A.N.; Jabbal-Gill, I.; Davis, S.S. Bioadhesive starch microspheres and absorption enhancing agents act synergistically to enhance the nasal absorption of polypeptides. Int. J. Pharm. 2001, 222, 109-119.

Callens, C.; Pringels, E.; Remon, J.P. Influence of multiple nasal administrations of bioadhesive powders on the insulin bioavailability. Int. J. Pharm. 2003, 250, 415-422.

Pringels, E.; Vervaet, C.; Verbeeck, R.; Foreman, P.; Remon, J.P. The addition of calcium ions to starch/carbopol mixtures enhances the nasal bioavailability of insulin. Eur. J. Pharm. Biopharm. 2008, 68, 201-206.

Jain, A.K.; Khar, R. K.; Ahmed, F. J.; Diwan, P.V. Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. Eur. J. Pharm. Biopharm. 2008, 69, 426-435.

Pereswetoff-Morath, L.; Edman, P. Dextran microspheres as a potential nasal drug delivery system for insulin-in vitro and in vivo properties. Int. J. Pharm. 1995, 124, 37-44.

Takenaga, M.; Serizawa, Y.; Azechi, Y.; Ochiai, A.; Kosaka, Y.; Igarashi, R.; Mizushima, Y. Microparticle resins as a potential nasal drug delivery system for insulin. J. Control. Release 1998, 52, 81-87.

Illum, L.; Farraj, N.F.; Fisher, A.N.; Gill, I.; Miglietta, M.; Benedetti, L.M. Hyaluronic acid ester microspheres as a nasal delivery system for insulin. J. Control. Release 1994, 29, 133-141.

Fernandez-Urrusuno, R.; Romani, D.; Calvo, P.; Vila-Jato, J.L.; Alonso, M.J. Development of a freeze-dried formulation of insulin-loaded chitosan nanoparticles intended for nasal administration. S.T.P. Pharma. Sci. 1999, 9, 429-436.

Varshosaz, J.; Sadrai, H.; Alinagari, R. Nasal delivery of insulin using chitosan microspheres. J. Microencapsul. 2004, 21, 761-774.

Krauland, A.H.; Leitner, V.M.; Grabovac, V.; Bernkop-Schnürch, A. In vivo evealuation of a nasal insulin delivery system based on thiolated chitosan. J. Pharm. Sci. 2006, 95, 2463-2472.

Krauland, A.H.; Alonso, M.J. Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. Int. J. Pharm. 2007, 340, 134-142.

Bhumkar, D.R.; Joshi, H.M.; Sastry, M.; Pokharkar, V.B. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm. Res. 2007, 24, 1415-1426.

Wang, X.; Zheng, C.; Wu, Z.; Teng, D.; Zhang, X.; Wang, Z.; Li, C. Chitosan-NAC nanoparticles as a Vehicle for nasal absorption enhancement of insulin. J. Biomed. Mater. Res. 2009, 88, 150-161.

Teijeiro-Osorio, D.; Remunán-López, C.; Alonso, M.J. New generation of hybrid poly/oligosaccharide nanoparticles as carriers for the nasal delivery of macromolecules. Biomacromolecules 2009, 10, 243-249.

Wang, J.; Tabata, Y.; Morimoto. K. Aminated gelatin microspheres as a nasal delivery system for peptide drugs: Evaluation of in vitro release and in vivo absorption in rats. J. Control. Release 2006, 113, 31-37.

Khafagy, E.S.; Morishita, M.; Isowa, K.; Imai, J.; Takayama, K. Effect of cell-penetrating peptides on the nasal absorption of insulin. J. Control. Release 2009, 133, 103-108.

Most read articles by the same author(s)