Exploring Intestinal Barrier Function And Drug Delivery

Main Article Content

Elgiz Sharifov
Hulya Celik

Abstract

In recent years, significant efforts have been made to understand oral drug absorption mechanisms and to develop new research models. These studies have been conducted using both in vitro and in vivo models and play a crucial role in determining the rate and extent of drug absorption in the intestines. Specifically, the permeability value (Peff value) is a common measure used to assess drug intestinal passage. Today, there is an increasing need for reliable gastrointestinal absorption models that can be used in preclinical studies to develop new drugs and appropriate dosages. However, collaboration and integration across different disciplines are important for further advancements in this field. Strengthening connections between pharmaceutical, biopharmaceutical, biochemical, and physiological research areas can contribute to a better understanding of drug absorption mechanisms and biopharmaceutical progress. Particularly, the use of animal models that mimic human intestinal drug permeability and the role of human cell culture models in investigating drug absorption in the intestine are highlighted as significant steps in this regard. Such research enables a more detailed examination of intestinal drug diffusion processes, which are crucial for the biopharmaceutical advancement of pharmaceutical compounds. Understanding factors such as the interactions between drug molecules and membrane transport molecules that affect the intestinal Peff value can further advance the assessment and improvement of drug absorption processes.

Downloads

Download data is not yet available.

Article Details

How to Cite
Elgiz Sharifov, & Hulya Celik. (2024). Exploring Intestinal Barrier Function And Drug Delivery. Journal of Advanced Zoology, 45(3), 174–189. https://doi.org/10.53555/jaz.v45i3.4285
Section
Articles
Author Biographies

Elgiz Sharifov

Agrı Ibrahim Cecen University, Faculty of Pharmacy Basic Pharmaceutical Sciences Department / Fundamental Sciences of Pharmacy 04100 Agri/TURKEY, ORCID:0000-0003-0805-0523

Hulya Celik

Agrı Ibrahim Cecen University, Faculty of Pharmacy Basic Pharmaceutical Sciences Department / Fundamental Sciences of Pharmacy 04100 Agri/TURKEY, ORCID:0000-0003-0805-0523

References

Abbasi, S., Khani, H., Gholivand, M.B., Naghipour, A., Farmany, A., Abbasi, F. (2009). A kinetic method for the determination of thiourea by its catalytic effect in micellar media. Spectrochim Acta Part A Molecular and Biomolecular Spectroscopy, 72, 327-331.

Arrieta, M.C., Bistritz, L., Meddings, J.B. (2006). Alterations in intestinal permeability. Gut, 55(10), 1512-20.

Artursson, P., Palm, K., Luthman, K. (2001). Caco-2 monolayers in experimental and theoretical predictions of drug transport. Advanced Drug Delivery Reviews, 46, 27-43.

Ateş, M. (2013). Barsaklardan Parasellüler İlaç Absorpsiyonu Üzerine Permeabilite Artırıcı Ajanların Etkisinin Araştırılması. Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara.

Baker, J.R.; Dickens, J.R.; Koenigsknecht, M.; Frances, A.; Lee, A.A.; Shedden, K.A.; Brasseur, J.G.; Amidon, G.L.; Sun, D.; Hasler, W.L. Propagation Characteristics of Fasting Duodeno-Jejunal Contractions in Healthy Controls Measured by Clustered Closely-spaced Manometric Sensors. J. Neurogastroenterol. Motil. 2019, 25, 100. [CrossRef]

Bijlsma, P. B., Peeters, R. A., Groot, J. A., Dekker, P. R., Taminiau, J. A. Van Der Meer, R. (1995). Differential in vivo and in vitro intestinal permeability to lactulose and mannitol in animals and humans: a hypothesis. Gastroenterology, 108(3), 687-696

Cennet, Ö. (2018). Besinler ve gastrointestinal sistem salgılarının deneysel sıçan modelinde intestinal bütünlük üzerine etkileri. Uzmanlık Tezi, Hacettepe Üniversitesi Tıp Fakültesi, Ankara.

Corazza, F. G., Ernesto, J. V., Nambu, F. A., Calixto, L. A., Varca, G. H., Vieira, D. P., ... & Lopes, P. S. (2020). Enhancing the furosemide permeability by papain minitablets through a triple co-culture in vitro intestinal cell model. AAPS PharmSciTech, 21(7), 1-10.

Cummings, J.H., Antoine, J.M., Azpiroz, F., Bourdet-Sicard, R., Brandtzaeg, P., Calder, P.C., … Watzl, B. (2004). Passclaım–gut health and immunity. European Journal of Nutrition, 43(2), 118-173.

Dahlgren D, Lennernäs H. Intestinal Permeability and Drug Absorption: Predictive Experimental, Computational and In Vivo Approaches. Pharmaceutics. 2019 Aug 13;11(8):411. doi: 10.3390/pharmaceutics11080411. PMID: 31412551; PMCID: PMC6723276.

Dahlgren, D.; Roos, C.; Lundqvist, A.; Abrahamsson, B.; Tannergren, C.; Hellström, P.M.; Sjögren, E.; Lennernäs, H. Regional intestinal permeability of three model drugs in human. Mol. Pharm. 2016, 13, 3013–3021. [CrossRef] [PubMed]

Dahlgren, D.; Roos, C.; Lundqvist, A.; Langguth, P.; Tannergren, C.; Sjöblom, M.; Sjögren, E.; Lennernas, H. Preclinical effect of absorption modifying excipients on rat intestinal transport of five model compounds and the intestinal barrier marker 51Cr-EDTA. Mol. Pharm. 2017, 14, 4243–4251. [CrossRef]

Duerksen, D.R., Wilhelm-Boyles, C., Veitch, R., Kryszak, D., Parry, D.M. (2010). A comparison of antibody testing, permeability testing, and Zonulin levels with smallbowel biopsy in celiac disease patients on a gluten-free diet. Digestive Diseases and Sciences, 55, 1026-1031.

El-Asmar, R., Panigrahi, P., Bamford, P., Berti, I., Not, T., Coppa, G.V., … Fasano, A., (2002). Host-dependent Zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology, 123(5), 1607-15.

Fasano, A. (2001). Intestinal Zonulin: Open sesame! Gut, 49, 159-162.

Fasano, A. (2012). Zonulin, regulation of tight junctions, and autoimmune diseases. Annals of the New York Academy of Sciences, 1258(1), 25–33.

Fasano, A., Not, T., Wang, W., Uzzau, S., Berti, I., Tommasini, A., … Goldblum, S.E., (2000). Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet, 355(9214), 1518-9.

Gozalbes, R.; Jacewicz, M.; Annand, R.; Tsaioun, K.; Pineda-Lucena, A. QSAR-based permeability model for drug-like compounds. Bioorg. Med. Chem. 2011, 19, 2615–2624. [CrossRef]

Grootjans, J., Thuijls, G., Verdam, F., Deriks, J.P.M., Lenaerts, K., Buurman, W.A. (2010). Non-invasive assessment of barrier integrity and function of the human gut. World Journal of Gastrointestinal Surgery, 2, 61-69.

Heimbach, T.; Suarez-Sharp, S.; Kakhi, M.; Holmstock, N.; Olivares-Morales, A.; Pepin, X.; Sjögren, E.; Tsakalozou, E.; Seo, P.; Li, M. Dissolution and Translational Modeling Strategies Toward Establishing an In Vitro-In Vivo Link—A Workshop Summary Report. ed.; Springer: Berlin/Heidelberg, Germany, 2019.

İŞLİ, U. D. F., & BAŞCI, U. D. A. B. BİLİMSEL DANIŞMA KURULU Prof. Dr. Ayşe GELAL.

Jenkins, A.P., Nukajam, W.S., Menzies, I.S. ve Creamer, B. (1992). Simultaneous administration of lactulose and 51Cr-ethylenediaminetetraacetic acid. A test to distinguish colonic from small-intestinal permeability change. Scandinavian Journal of Gastroenterology, 27(9), 769-73

Jimison, L.H., Tria, S.A., Khodagholy, D., Gurfinkel, M., Lanzarina, E., Hama, A., … Owens, R.M. (2012). Measurement of barrier tissue integrity with an organic electrochemical transistor. Advanced Materials, 24, 5919-5923.

Kocakaya, O. (2009). Glukagon benzeri peptid-2’nin deneysel artrit modelinde intestinal permeabilite ve gastrointestinal inflamasyon üzerindeki etkileri. Uzmanlık Tezi, Marmara Üniversitesi, İstanbul.

Langhorst, J., Elsenbruch, S., Mueller, T., Rueffer, A., Spahn, G., Michalsen, A., Dobos, G.J. (2005). Comparison of 4 neutrophil-derived proteins in feces as indicators of disease activity in ulcerative colitis. Inflammatory Bowel Diseases, 11, 1085-1091.

Lee, S.H. (2015). Intestinal Permeability Regulation by Tight Junction: Implication on Inflammatory Bowel Diseases. Intestinal Research, 13(1), 11–18.

Lennernas, H.; Lindahl, A.; Van Peer, A.; Ollier, C.; Flanagan, T.; Lionberger, R.; Nordmark, A.; Yamashita, S.; Yu, L.; Amidon, G. In vivo predictive dissolution (IPD) and biopharmaceutical modeling and simulation: Future use of modern approaches and methodologies in a regulatory context. Mol. Pharm. 2017, 14, 1307–1314. [CrossRef]

Mahajan, R.; Parvez, A.; Gupta, K. Microdosing vs. Therapeutic dosing for evaluation of pharmacokinetic data: A comparative study. J. Young Pharm. 2009, 1, 290. [CrossRef]

Nieto, N., Torres, M.I., Fernández, M.I., Girón M.D., Ríos, A., Suarez, M.D., Gil, A. (2000). Experimental ulcerative colitis impairs antioxidant defense system in rat intestine. Digestive Diseases and Sciences, 45, 1820–1827.

Nusrat, A.1., Turner, J.R., Madara, J.L. (2000). Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. American Journal of Physiology Gastrointest Liver Physiology, 279(5), 851-7.

Özer, M. T. (2019). Ceza hukuku kapsamında ilaç üretimi, insan üzerinde bilimsel ve tedavi amaçlı deney (Master's thesis, Sosyal Bilimler Enstitüsü).

Papain-cyclodextrin complexes as an intestinal permeation enhancer: Permeability and in vitro safety evaluation, Journal of Drug Delivery Science and Technology, Volume 55, 2020,101413,bISSN 1773-2247, https://doi.org/10.1016/j.jddst.2019.101413.

Roffey, S.J.; Obach, R.S.; Gedge, J.I.; Smith, D.A. What is the objective of the mass balance study? A retrospective analysis of data in animal and human excretion studies employing radiolabeled drugs. Drug Metab. Rev. 2007, 39, 17–43. [CrossRef]

SaRı, F., & ERSoy, F. F. Kronik Böbrek Hastalığında İlaç Kullanımı Drug Use in Chronic Kidney Disease.

Sjögren, E.; Abrahamsson, B.; Augustijns, P.; Becker, D.; Bolger, M.B.; Brewster, M.; Brouwers, J.; Flanagan, T.; Harwood, M.; Heinen, C.; et al. In vivo methods for drug absorption–comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur. J. Pharm. Sci. 2014, 57, 99–151.

TUTUN, H. (2018). Reseptör Analizinde Radyoligand Bağlanma Deneyleri. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 15(2), 161-168.

Wang, W., Uzzau, S., Goldblum, S.E., Fasano, A. (2000). Human Zonulin, a potential modulator of intestinal of intestinal tight junctions. Journal of Cell Science, 113, 4435- 4440.

Wang, Y.T.; Mohammed, S.D.; Farmer, A.D.; Wang, D.; Zarate, N.; Hobson, A.R.; Hellström, P.M.; Semler, J.R.; Kuo, B.; Rao, S.S. Regional gastrointestinal transit and pH studied in 215 healthy volunteers using the wireless motility capsule: Influence of age, gender, study country and testing protocol. Aliment. Pharm. Ther. 2015, 42, 761–772. [CrossRef]