Protein Engineering Of Bt Genes cry1Ab And cry1Ba For The Development Of Chimeric Genes cryAbabba, cryBabaab And cryAbbaab Via Domain Swapping

Main Article Content

N. Muralimohan
Vivek kumar Singh
Maniraj Rathinam
K. Kasturi
Rohini Sreevathsa

Abstract

Bacillus thuringiensis is renowned for its production of insecticidal cry proteins, widely utilized in crop protection to combat insects. However, the risk of insect resistance emerges due to the relatively loose binding of toxins to target sites on larvae's midgut brush boundary membranes. This resistance primarily stems from modifications in binding sites within midgut cells. To address potential threats, the discovery of new Cry proteins is imperative as insects continually evolve resistance against existing ones. Combining Cry toxins with diverse binding sites in larval midguts is proposed as an effective strategy to delay the onset of resistance. In this study, three chimeric B. thuringiensis proteins—CryAbAbBa, CryBaBaAb, and CryAbBaAb—were engineered via domain swapping, utilizing crystal proteins CrylAb and CrylB. Structural validation was conducted, confirming their integrity through Ramachandran Plots. The chimeric proteins can be used as additional resources in crop improvement programmes.

Downloads

Download data is not yet available.

Article Details

How to Cite
N. Muralimohan, Vivek kumar Singh, Maniraj Rathinam, K. Kasturi, & Rohini Sreevathsa. (2024). Protein Engineering Of Bt Genes cry1Ab And cry1Ba For The Development Of Chimeric Genes cryAbabba, cryBabaab And cryAbbaab Via Domain Swapping. Journal of Advanced Zoology, 45(3), 24–31. https://doi.org/10.53555/jaz.v45i3.4137
Section
Articles
Author Biographies

N. Muralimohan

ICAR- National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India

Vivek kumar Singh

ICAR- National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India

Maniraj Rathinam

ICAR- National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India

K. Kasturi

Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh 522510, India

Rohini Sreevathsa

ICAR- National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India

References

Ruud, A. M., Alejandra, B. and Neil, C. 2011. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends in Genetics., 17:193-199.

Soberón, M., Gill SS. and Bravo, A. 2009. Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol Life Sci., 66:1337–1349.

Bravo, A., Gill, SS. and Soberon, M. 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon., 49:423–435.

Gomez, I., Pardo-Lopez, L., Munoz-Garay, C., Fernandez, LE. and Perez, C.2007. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides., 28:169–173.

Pardo-Lopez, L., Soberon, M., and Bravo, A. 2013. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev., 37: 3–22.

Pigott, CR., and Ellar, DJ. 2007. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev., 71: 255–281.

Banerjee, R., Hasler, J., Meagher, R., Nagoshi, R. and Hietala, L. 2017. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda). Sci Rep., 7: 10877.

Ferre, J. and Van Rie, J. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol., 47: 501–533.

Flagel, L, Lee, YW., Wanjugi, H., Swarup, S. and Brown, A. 2018. Mutational disruption of the ABCC2 gene in fall armyworm, Spodoptera frugiperda, confers resistance to the Cry1Fa and Cry1A.105 insecti cidal proteins. Sci Rep., 8: 7255.

Xiao, Y., Liu, K., Zhang, D., Gong, L., He, F. 2016. Resistance to Bacillus thuringiensis Mediated by an ABC Transporter Mutation Increases Susceptibility to Toxins from Other Bacteria in an Invasive Insect. PLoS Pathog., 12: 100-450.

Jime´nez-Jua´rez, A., Mun˜oz-Garay, C., Go´mez, I., Saab-Rincon, G., Damian-Alamazo, JY., Gill, SS., Sobero´n, M. & Bravo A (2007) Bacillus thuringiensis Cry1Ab mutants affecting oligomer formation are non-toxic to Manduca sexta larvae. J Biol Chem., 282:21222–21229

Hernández-Rodríguez, C S., Vliet, A V., Bautsoens, N., Rie, J V. and Ferré, J. 2008. Specific binding of Bacillus thuringiensis Cry2A insecticidal proteins to a common site in the midgut of Helicoverpa species. Applied and Environmental Microbiology., 74:654-765.

Hofmann, C., Vanderbruggen, H., Höfte, H., van Rie, J., Jansens, S. and van Mellaert, H. 1988. Specificity of Bacillus thuringiensis-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proceedings of the National Academy of Sciences of the United States of America., 85:7844-7848

Grochulski, P., Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, JL., Brousseau, R. and Cygler, M. 1995. Bacillus thuringiensis Cry1A(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol., 254:447– 464.

de Maagd, RA., Bravo, A. and Crickmore, N. 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet., 17:193–199.

Bravo, A., Likitvivatanavong, S., Gill, SS. and Soberón, M. 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol., 41:423–431.

Derbyshire, D J., Ellar, D J. and Li, J. 2001. Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Crystallographica (Section D, Biological Crystallography)., 57:1938-1944.

Li, J., Derbyshire, D J., Promdonkoy, B. and Ellar, D J. 2001. Structural implications for the transformation of the Bacillus thuringiensis δ-endotoxins from water-soluble to membrane-inserted forms. Biochemical Society Transactions., 29:571-577

Morse, RJ., Yamamoto, T. & Stroud, RM. 2001. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure., 9:409–417.

Li, J., Carrol, J. & Ellar, DJ. 1991 Crystal structure of insecticidal d-endotoxin from Bacillus thuringiensis at 2.5 A˚ resolution. Nature., 353:815–821.

Galitsky, N., Cody, V., Wojtczak, A., Debashis, G., Luft, JR,, Pangborn, W. & English, L. 2001. Structure of insecticidal bacterial d-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr D Boil Crystallogr., 57:1101–1109.

Boonserm, P., Mo, M., Angsuthanasombat, C. and Lescar, J. 2006. Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. Journal of Bacteriology., 188:3391-3401.

Boonserm, P., Davis, P., Ellar, D J. and Li J. 2005. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. Journal of Molecular Microbiology and Biotechnology., 348:363-382.

Guo, S., Ye, S. and Liu, Y.2009. Crystal structure of Bacillus thuringiensis Cry8Ea1: an insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela.J Struct Biol., 168:259–266.

Pacheco, S., Gómez, I., Arenas, I., Saab-Rincon, G., Rodríguez-Almazan Gill, SS., Bravo, A. and Soberón, M. 2009. Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a “ping-pong” binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors. J Biol Chem., 284:32750–32757.

Arenas, I., Bravo, A., Soberón, M. and Gómez, I. 2010. Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis. Cry1Ab toxin. J Biol Chem., 285:12497–12503.

Gómez, I., Sánchez, J., Miranda, R., Bravo, A. and Soberón, M. 2002. Cadherin-like receptor binding facilitates proteolytic cleavage of helix 1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett., 513:242–246.

Bravo, A., Gómez, I., Conde, J., Muñoz-Garay, C., Sánchez, J., Zhuang, M. and Gill Soberón, SSM. 2004. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim Biophys Acta., 1667:38–46.

Tabashnik, B. E. 2011. Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance.Nat. Biotechnol., 29:1128–1131.

Roush, R. T. 1998. Two-toxin strategies for management of insecticidal transgenic crops: Can pyramiding succeed where pesticide mixtures have not?. Philos. Trans. R. Soc. Lond. B., 353:1777–1786.

Storer, N. P. 2010. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol., 103:1031–1038.

Van Rensburg, J. B. J. 2007. First report of field resistance by stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S. Afr. J. Plant Soil., 24:147–151.

Kruger, M. 2011. Resistance to Bt maize in Busseola fusca (Lepidoptera: Noctuidae) from Vaalharts, South Africa. Environ. Entomol., 40:477–483.

Dhurua, S. & Gujar, G. T. 2011. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag Sci., 67:898–903.

Gassmann, A. J., Petzold-Maxwell, J. L., Keweshan, R. S. & Dunbar, M. W. 2011. Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE., 6:22-29.

Sambrook, J., Frish, EF. and Maniatis, T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor, New York.

He, K L, Wang, Z Y., Zhou, D R., Wen, L P., Song, Y Y. and Yao, Z Y. 2003. Evaluation of transgenic Bt corn for resistance to the Asian corn borer (Lepidoptera: Pyralidae). Journal of Economic Entomology., 96: 935-940.

English, L., Robbins, H L., von Tersch, M A., Kulesza, C A., Ave, D., Coyle, D., Jany, C S. and Slatin, S L. 1994. Mode of action of CryIIA: a Bacillus thuringiensis δ-endotoxin. Insect.,

Karim, S., Riazuddin, S., Gould, F. and Dean, D H. 2000. Determination of receptor binding properties of Bacillus thuringiensis δ-endotoxins to cotton bollworm (Helicoverpa zea) and pink bollworm (Pectinophora gossypiella) midgut brush border membrane vesicles. Pesticide Biochemistry and Physiology., 67: 198-216.

Yang, Y. Y., Mei, F., Zhang, W., Shen, Z. & Fang, J. 2014. Creation of Bt rice expressing a fusion protein of Cry1Ac and Cry1I-like using a green tissue-specifc promoter. J. Econ. Entomol., 107: 1674–1679.