A review on IoT based precision irrigation planning and scheduling

Main Article Content

T. Sai Krishna reddy
Pooja Srivastav
Konga Upendar

Abstract

Global warming and climate change are warnings showcasing water crisis. At the same time ever growing population is ultimatum to the food security. In span of such times, world has to be made a sustainable habitat. It is only possible when each ounce of resources is being measured and used judiciously. Maximum responsibility is on farmers and researchers of the world. In times of advanced technologies, Internet of Things (IoT) has surfaced as a saviour. IoT based systems have been stated as success in monitoring and control mechanisms. Thus, this paper was intended to review the control strategies and monitoring systems based on IoT. The literature incorporates basic information as well as recent trends in the field of irrigation management based on IoT.

Downloads

Download data is not yet available.

Article Details

How to Cite
T. Sai Krishna reddy, Pooja Srivastav, & Konga Upendar. (2024). A review on IoT based precision irrigation planning and scheduling. Journal of Advanced Zoology, 45(3), 394–405. https://doi.org/10.53555/jaz.v45i3.4056
Section
Articles
Author Biographies

T. Sai Krishna reddy

Department of Agricultural Engineering, School of Agriculture, SR University, Warangal 506371, Telangana, India

Pooja Srivastav

Department of Agronomy, School of Agriculture, SR University, Warangal 506371, Telangana, India

Konga Upendar

Centurion University of technology and management

References

Adamala, S., Raghuwanshi, N.S., Mishra, A., 2014. Development of surface irrigation systems design and evaluation software (SIDES). Comput. Electron. Agric. 100, 100–109.

Aubert, B.A., Schroeder, A., Grimaudo, J., 2012. IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decision Support Systems 54 (1), 510–520.

Adeyemi, O., Grove, I., Peets, S., Norton, T., 2017. Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability-MDPI 9 (353), 1–29. https://doi.org/10.3390/su9030353.

Agency, U. S. E. P. (2017). Soil Moisture-Based Irrigation Control Technologies:Water Sense ® Specification Update. EPA Water Sense.

Aleotti, J., Amoretti, M., Nicoli, A., Caselli, S., 2018. A smart precision-agriculture platform for linear irrigation systems. In: 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM). University of Split, FESB, pp.1–6.

Andrew, R.C., Malekian, R., Bogatinoska, D.C., 2018. IoT solutions for precision agriculture. In: 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2018 – Proceedings, Croatian Society MIPRO, pp. 345–349. https://doi.org/10.23919/MIPRO.2018.8400066.

Anusha, K. Surendra, A. Mohan, H. K, M.V. Kirthika, N. Internet of things based smart irrigation using regression algorithm. https://doi.org/10.1109/ICICICT1.2017. 8342819.

Bajpai, A., Kaushal, A., 2020. Soil moisture distribution under trickle irrigation: a review. In Press. Water Sci. Technol. Water Supply 1–12.

Bauer, J., Aschenbruck, N., 2018. Design and implementation of an agricultural monitoring system for smart farming. In: 2018 IoT Vertical and Topical Summit on Agriculture - Tuscany, IOT Tuscany 2018, IEEE, pp. 1–6. https://doi.org/10.1109/ IOT-TUSCANY.2018.8373022.

Bhalage, Pradeep, Jadia, B.B., Sangale, S.T., 2015. Case studies of innovative irrigation management techniques. Aquat. Procedia 4, 1197–1202. https://doi.org/10.1016/j. aqpro.2015.02.152.

Bitella, G., Rossi, R., Bochicchio, R., Perniola, M., Amato, M., 2014. A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters. Mdpi Sensors J. 14, 19639–19659. https://doi.org/10.3390/ s141019639.

Bogue, R., 2017. Sensors key to advances in precision agriculture. Sensor Review, Emerald Publishing Limited 37 (1), 1–6. https://doi.org/10.1108/SR-10-2016-0215.

Boman, B., Smith, S., Tullos, B., 2015. Control and automation in citrus microirrigation systems. Agricultural and Biological Engineering Department, UF/IFAS Extension, pp. 1–15.

Bralts, V., Edwards, D., 1987. Drip Irrigation Design and Evaluation based on the Statistical Uniformity Concept. ACADEMIC PRESS, INC. https://doi.org/10.1016/ B978-0-12-024304-4.50005-5.

Brouwer, C., Prins, K., Kay, M., Heibloem, M., 1990a. Drip Irrigation. Retrieved June 17, 2019, from http://www.fao.org/3/S8684E/s8684e07.html.Brouwer, Prins, Kay, Heibloem, 1990b. Surface irrigation systems. Retrieved June 17, 2019,

Capraro, F., Tosetti, S., Rossomando, F., Mut, V., 2018. Web-based system for the remote monitoring and management of precision irrigation: a case study in. Sensors MDPI.

Cai, P.W., L, Z., 2017. Simulation of soil water movement under subsurface irrigation with porous ceramic emitter. Agric. Water Manage. 192, 244–256.

Cambra, C., Sendra, S., Lloret, J., Lacuesta, R., 2018. Smart system for bicarbonate control in irrigation for hydroponic precision farming. Sensors-MDPI 1333, 1–16. https://doi.org/10.3390/s18051333.

Capraro, F., Tosetti, S., Rossomando, F., Mut, V., 2018. Web-based system for the remote monitoring and management of precision irrigation: a case study in. Sensors MDPI. https://doi.org/10.3390/s18113847.

Chami, D. El, Knox, J.W., Daccache, A., Weatherhead, E.K., 2019. Assessing the financial and environmental impacts of precision irrigation in a humid climate. Horticultural Science (Prague) 46 (1), 43–52. https://doi.org/10.17221/116/2017-HORTSCI.

Chate, B.K., Rana, P.J.G., 2016. Smart irrigation system using raspberry pi. Retrieved from. Int. Res. J. Eng. Technol. (IRJET) 3 (5), 247–249. https://www.irjet.net/archives/V3/i5/IRJET-V3I553.pdf.

Daccache, A., Knox, J.W., Weatherhead, E.K., Daneshkhah, A., Hess, T.M., 2015. Implementing precision irrigation in a humid climate – Recent experiences and ongoing challenges. Elsevier -Agricultural Water Manage. 147, 135–143.

Deng, Xiaolong, Dou, Yingtong, Hu, Dawei, 2018. Robust closed-loop control of vegetable production in plant factory. Comput. Electron. Agric. 155, 244–250. https://doi.org/ 10.1016/j.compag.2018.09.028.

Difallah, W., Bounnama, F., Draoui, B., Benahmed, K., 2018. Intelligent irrigation management system. (IJACSA). Int. J. Adv. Comput. Sci. Appl. 9 (9), 429–433 https:// doi.org/Intelligent Irrigation Management System.

Ding, Ying, Wang, Liang, Li, Yongwei, Li, Daoliang, 2018. Model predictive control and its application in agriculture: A review. Comput. Electron. Agric. 151, 104–117. https://doi.org/10.1016/j.compag.2018.06.004.

Dlodlo, N., Josephat, K., 2015. The internet of things in agriculture for sustainable rural development. In: International Conference on Emerging Trends in Networks and Computer Communications (ETNCC). IEEE, pp. 13–18 https://doi.org/10.1109/ TNCC.2015.7184801.

Dubravko Ćulibrk, Minic, D.V.V., Osuna, M.A.F.J.A., Crnojevic, V., 2014. Sensing Technologies For Precision Irrigation. Springer New York Heidelberg Dordrecht London Library https://doi.org/DOI 10.1007/978-1-4614-8329-8.

Elijah, O., Orikumhi, I., Rahman, T.A., Babale, S.A., Orakwue, S.I., 2018. Enabling smart agriculture in Nigeria: Application of IoT and data analytics. In: 2017 IEEE 3rd International Conference on Electro-Technology for National Development, NIGERCON 2017, 2018-Janua, pp. 762–766. https://doi.org/10.1109/NIGERCON. 2017.8281944.

Evans, R.G., Iversen, W.M., Kim, Y., 2012. Integrated decision support, sensor networks, and adaptive control for wireless site-specific sprinkler irrigation. Appl. Eng. Agriculture, Am. Soc. Agricultural Biol. Eng. 28 (3), 377–387.

Evans, R.G., King, B.A., 2012. Site-specific sprinkler irrigation in a water-limited future. Transactions of the ASABE 2012 American Society of Agricultural and Biological Engineers ISSN 2151-0032, 55(2), 493–504. https://doi.org/10.13031/2013.35829.

Ferrarezi, R.S., T.R., 2016. Performance of wick irrigation system using self- compensating troughs with substrates for lettuce production. J. Plant Nutr., 39(1), 147–161.

Fujimaki, H., Inoue, M., Mamedov, A., Ikeguchi, N., Nakai, R., 2018. Salinity management under a capillary-driven automatic irrigation system. J. Arid Land Stud. 118, 115–118.

Gillies, M., 2017. Modernisation of furrow irrigation in the sugar industry: final report2014/079. Sugar Research Australia Ltd.

Ghodake, M.R.G., Mulani, M.A.O., 2016. Sensor based automatic drip irrigation system. J. Res. 02 (02), 53–56.

Hamouda, Y.E.M., 2017. Smart irrigation decision support based on fuzzy logic using wireless sensor network. In: International Conference on Promising Electronic Technologies, pp. 109–113. https://doi.org/10.1109/ICPET.2017.26.

Harper, S., 2017. Real-time control of soil moisture for efficient irrigation. https://doi.org/10.1111/icad.12044.

Harun, A.N., Mohamed, N., Ahmad, R., Rahim, A.R.A., Ani, N.N., 2019. Improved Internet of Things (IoT)monitoring system for growth optimization of Brassica chinensis.Comput. Electron. Agric. 1–11. https://doi.org/10.1016/j.compag.2019.05. 045.

Hemming, S., Zwart, F. De, Elings, A., Righini, I., Petropoulou, A., 2019. Remote control of greenhouse vegetable production irrigation, and crop production. MDPI-Sensors Article 19, 1785–1807. https://doi.org/10.3390/s19081807.

Higgins, V., Bryant, M., Howell, A., Battersby, J., 2017. Ordering adoption: Materiality, knowledge and farmer engagement with precision agriculture technologies. Journal of Rural Studies 55, 193–202.

Hou, L., Shang, J., Liu, J., Lu, H., Qi, Z., 2015. Soil water movement under a drip irrigation double-point source. Water Sci. Technol. Water Supply 15 (5), 924–932. https://doi.org/10.2166/ws.2015.045.

Jayaraman, P., Yavari, A., Georgakopoulos, D., Morshed, A., Zaslavsky, A., 2016. Internet of things platform for smart farming: experiences and lessons learnt. Sensors MDPI 1–17. https://doi.org/10.3390/s16111884.

Jha, R.K., Kumar, S., Joshi, K., Pandey, R., 2017. Field monitoring using IoT in agriculture. In: 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT, pp. 1417–1420.

Jia, X., Huang, Y., Wang, Y., Sun, D., 2019. Research on water and fertilizer irrigation system of tea plantation. Int. J. Distrib. Sens. Netw. 15 (3). https://doi.org/10.1177/1550147719840182.

Joly, M., Mazenq, L., Marlet, M., Temple-Boyer, P., Durieu, C., Launay, J., 2017. Multimodal probe based on ISFET electrochemical microsensors for in-situ monitoring of soil nutrients in agriculture. Proceedings, 1(10), 420. https://doi.org/10. 3390/proceedings1040420.

Kamal, R., Muhammed, H.H., Mojid, M.A., 2019. Two-dimensional modelling of water distribution under capillary wick irrigation system. Science & Technology, Pertanika J. Sci. & Technol. 27 (1): 205–223 (2019) Science, 27(1), 205–223. Retrieved from http://www.pertanika.upm.edu.my/%0A.

Kamilaris, A., Kartakoullis, A., Prenafeta-boldu, F.X., 2017. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 143 (September), 23–37. https://doi.org/10.1016/j.compag.2017.09.037.

Karim, F., Karim, F., Ali, F., 2017. Monitoring system using web of things in precision agriculture. In: The 12th International Conference on Future Networks and Communications (FNC 2017). Elsevier B.V., pp. 402–409 https://doi.org/10.1016/ j. procs.2017.06.083.

Keswani, B., Mohapatra, A.G., Mohanty, A., Khanna, A., Rodrigues, J.J.P.C., Gupta, D., de Albuquerque, V.H.C., 2018. Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms. Neural Comput. Appl. 1, 1–16. https://doi.org/10.1007/s00521-018-3737-1.

Kinoshita, T., Masuda, M., Watanabe, S., Nakano, Y., 2010. Application of controlled release fertilizer to forcing culture of tomato using root-proof capillary wick. Hortic Resour. 9 (1), 39–46. https://doi.org/10.2503/hrj.9.39.

Klein, L.J., Hamann, H.F., Hinds, N., Guha, S., Sanchez, L., Sams, B., Dokoozlian, N., 2018. Closed loop-controlled precision irrigation sensor network. IEEE Internet Things J. 5 (6), 4580–4588. https://doi.org/10.1109/JIOT.2018.2865527.

Koech, R., Langat, P., 2018. Improving irrigation water use efficiency: A review of advances, challenges and opportunities in the Australian context. MDPI J.-Water (Switzerland) 10 (12), 1754–1771. https://doi.org/10.3390/w10121771.

Koech, R., Smith, R., Gillies, M., 2010. Automation and control in surface irrigation systems: Current status and expected future trends. In: Southern Region Engineering Conference, SREC 2010, pp. 11–17.

Kumar, V. Vinoth, Ramasamy, R., Janarthanan, S., VasimBabu, M., 2017. Implementation of IoT in smart irrigation system using arduino processor. Int. J. Civil Eng. Technol. (IJCIET) 8 (10), 1304–1314. http://http://www.iaeme.com/ijciet/issues.asp? JType=IJCIET&VType=8&IType=10.

Kushwaha, D.S., Taram, M., Taram, A., 2015. A framework for technologically advanced smart agriculture scenario in India based on internet of things model. Int. J. Eng. Trends Technol. (IJETT) 27 (4), 182–185.

Lakhiar, I.A., Jianmin, G., Syed, T.N., Chandio, F.A., Buttar, N.A., Qureshi, W.A., 2018. Monitoring and control systems in agriculture using intelligent sensor techniques: a review of the aeroponic system. Hindawi J. Sens. 2018, 1–18. https://doi.org/10. 1155/2018/8672769.

Li, Q., Sugihara, T., Kodaira, M., Shibusawa, S., 2018. Water use efficiency of precision irrigation system under critical water-saving condition. In: 14th International Conference on Precision Agriculture June, pp. 1–7. Montreal, Quebec, Canada.

Li, Z., Wang, J., Higgs, R., Zhou, L., Yuan, W., 2017. Design of an intelligent management system for agricultural greenhouses based on the internet of things. In: IEEE International Conference on Computational Science and Engineering and IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, CSE and EUC, vol. 2, pp. 154–160. https://doi.org/10.1109/CSE-EUC.2017.212.

Lozoya, C., Mendoza, C., Aguilar, A., Roman, A., Castello, R., 2016. Sensor-based model driven control strategy for precision irrigation. J. Sens. 2016 (9784071), 1–12. https://doi.org/10.1155/2016/9784071.

Lozoya, C., Mendoza, C., Mej, L., Mendoza, G., Bustillos, M., Arras, O., Sol, L., 2014. Model predictive control for closed-loop irrigation. In: Preprints of the 19th World Congress the International Federation of Automatic Control, Cape Town, South Africa, pp. 4429–4434.

Mao, Y., Liu, S., Nahar, J., Liu, J., Ding, F., 2018. Soil moisture regulation of agro-hydrological systems using zone model predictive control. Comput. Electron. Agric. 154 (March), 239–247. https://doi.org/10.1016/j.compag.2018.09.011.

Marinescu, T., Arghira, N., Hossu, D., Fagarasan, I., 2017. Advanced control strategies for irrigation systems. In: The 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications 21-23 September, 2017, Bucharest, Romania, pp. 843–848.

Martin, J., Eduardo, L., Alejandro, J., Alejandra, M., Manuel, J., Teresa, D., Ernesto, L., 2017. Review of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 142 (118), 283–297. https://doi.org/10.1016/j.compag. 2017.09.015.

Masuda, M.F.S., 2008. Potential for tomato cultivation using capillary wick-watering method. Bull Fac Agric Okayama Univ., vol. 6.

Mohanraj, I., Ashokumar, K., Naren, J., 2016. Field monitoring and automation using IOT in agriculture domain. Procedia Comput. Sci., ScienceDirect 93 (September), 931–939. https://doi.org/10.1016/j.procs.2016.07.275.

Mohanraj, I., Gokul, V., Ezhilarasie, R., Umamakeswari, A., 2017. Intelligent drip irrigation and fertigation using wireless sensor networks. In: IEEE technological innovations in ICT for agriculture and rural development, TIAR, vol. 2018-Janua, pp. 36–41. https://doi.org/10.1109/TIAR.2017.8273682.

Montesano, F.F., Van Iersel, M.W., Parente, A., 2016. Timer versus moisture sensor-based irrigation control of soilless lettuce: Effects on yield, quality and water use efficiency. Horticultural Sci. 43 (2), 67–75. https://doi.org/10.17221/312/2014-HORTSCI.

Munoth, P., Goyal, R., Tiwari, K., 2016. Sensor based irrigation system: A review. Int. J. Engg. Res. Tech. 4 (23), 86–90 https://doi.org/IJERTCONV4IS23026.

Nalliah, V., Sri Ranjan, R., 2010. Evaluation of a capillary-irrigation system for better yield and quality of hot pepper (capsicum annuum). Appl. Eng. Agric. 26 (5),807–816

Nowak, P. (1997). A sociological analysis of site-specific management. In “The State of Site-Specific Management for Agriculture” (F. J. Pierce and E. J. Sadler, Eds.), ASA Miscellaneous Publication, pp. 397-422. ASA, CSSA, and SSSA, Madison, WI. Systematic literature review of implementations of precision agriculture.

Oborkhale, Lawrence I., Abioye, A.E., Egonwa, B.O., Olalekan, T.A., 2015. Design and Implementation of Automatic Irrigation Control System. IOSR J. Comput. Eng. (IOSRJCE) 17 (4), 99–111. https://doi.org/10.9790/0661-174299111.

Ohaba, Shukri, Qichen, Shibusawa, Kodaira, Osato, 2015. Adaptive control of capillary water flow under modified subsurface irrigation based on a SPAC model. In: Proceedings of the 7th International Conference on Precision Agriculture (ICPA 2015).

Orozco, O.A., Ramírez, G.L., 2016. Sistemas de información enfocados en tecnologías de agricultura de precisión y aplicables a la caña de azúcar, una revisión. Revista Ingenierías Universidad de Medellín 15 (28), 103–124

Paxton, K.W., Mishra, A.K., Chintawar, S., Roberts, R.K., Larson, J.A., English, B.C., Lambert, D.M., Marra, M.C., Larkin, S.L., Reeves, J.M., Martin, S.W., 2011. Intensity of Precision Agriculture Technology Adoption by Cotton Producers. Agricultural and Resource Economics Review 40 (01), 133–144.

Pathak, H.S., Brown, P., Best, T., 2019. A systematic literature review of the factors affecting the precision agriculture adoption process. Precision Agriculture 20 (6), 1–25. Pham, X., Stack, M., 2018. How data analytics is transforming agriculture. Business Horizons, ScienceDirect Www. Elsevier. Com 61 (1).

Patil, P., Desai, L.B., 2013. Intelligent irrigation control system by employing wireless sensor networks. Int. J. Comput. Appl. 79 (11), 33–40. https://doi.org/10.5120/ 13788-1882.

Pierpaoli, E., Carli, G., Pignatti, E., Canavari, M., 2013. Drivers of precision agriculture technologies adoption. A literature reviews. Procedia Technol. 8 (Haicta), 61–69. https://doi.org/10.1016/j.protcy.2013.11.010.

Pongnumkul, S., Chaovalit, P., Surasvadi, N., 2015. Applications of smartphone-based sensors in agriculture: a systematic review of research. Hindawi Publishing Corporation, J. Sens. 2015.

Pramanik, Lai, Ray, Patra, 2016. Effect of drip fertigation on yield, water use efficiency, and nutrients availability in banana in West Bengal, India. Commun Soil Sci Plant Anal., 47, 13–14. https://doi.org/10.1080/00103624.2016.1206560 55.

Prasad, A.N., Mamun, K.A., Islam, F.R., Haqva, H., 2016. Smart water quality monitoring system. In: 2nd Asia-Pacific World Congress on Computer Science and Engineering, APWC on CSE 2015, pp. 1–6. IEEE. https://doi.org/10.1109/APWCCSE.2015.7476234.

Rajeswari, S., Suthendran, K., Rajakumar, K., 2017. A smart agricultural model by integrating IoT, mobile and cloud-based big data analytics. In: International Conference on Intelligent Computing and Control (I2C2). https://doi.org/10.1109/I2C2.2017. 8321902.

Rajkumar, M.N., Abinaya, S., Kumar, V.V., 2017. Intelligent irrigation system - An IOT based approach. In: IEEE International Conference on Innovations in Green Energy and Healthcare Technologies – IGEHT, pp. 1–5. https://doi.org/10.1109/IGEHT. 2017.8094057.

Ramesh, M.V., Rangan, V.P., 2017. High yield groundnut agronomy: an IoT based precision farming framework. IEEE Global Humanitarian Technology Conference (GHTC). https://doi.org/10.1109/GHTC.2017.8239287.

Rao, R. Nageswara, Sridhar, B., 2018. IOT Based Smart Crop-Field Monitoring and Irrigation Automation. Proceedings of the Second International Conference on Inventive Systems and Control (ICISC 2018)-IEEE Xplore Compliant 18, 478–483 978-1-5386-0807-4.

Ravina, I., Paz, E., Sofer, Z., Marcu, A., Shisha, A., Sagi, G., 1992. Control of emitter clogging in drip irrigation with reclaimed wastewater. Irrig. Sci. 13 (3), 129–139. https://doi.org/10.1007/BF00191055.

Rekha, H.J., Kombali, G., Kumara, G., 2015. Impact of drip fertigation on water use efficiency and economics of aerobic rice. Irrigation Drain Syst. Eng. 04 (S1), 1–3. https://doi.org/10.4172/2168-939768.S1-00156.

Rodriguez, D., Reca, J., Martinez, J., Lopez-Luque, R., Urrestarazu, M., 2015. Development of a new control algorithm for automatic irrigation scheduling in soilless culture. Appl. Math. Inf. Sci. 9 (1), 47–56. https://doi.org/10.12785/amis/ 090107

Rodríguez, S., Gualotuña, T., Grilo, C., 2017. A System for the monitoring and predicting of data in precision agriculture in a rose greenhouse based on wireless sensor networks. Procedia Computer Science 121, 306–313.

Salvi, S., A, P.J.S., Sanjay, H.A., Harshita, T.K., Farhana, M., Jain, N., Suhas, M.V., 2017. Cloud based data analysis and monitoring of smart multi-level irrigation system using IoT. In: International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC 2017), pp. 752–757.

Saraf, S.B., Gawali, D.H., 2017. IoT based smart irrigation monitoring and controlling system. In: IEEE International Conference on Recent Trends in Electronics Information & Communication Technology (RTEICT), pp. 1–5.

Say, S.M., Keskin, M., Sehri, M., Sekerli, Y.E., Engineering, T., 2018. Adoption of precision agriculture technologies in developed and developing countries. In: International Science and Technology Conference (ISTEC). Berlin, Germany, vol. 8, pp. 7–15.

Say, S.M., Keskin, M., Sehri, M., Sekerli, Y.E., Engineering, T., 2018. Adoption of precision agriculture technologies in developed and developing countries. In: International Science and Technology Conference (ISTEC). Berlin, Germany, vol. 8, pp. 7–15.

Semananda, N., Ward, J., Myers, B., 2018. A semi-systematic review of capillary irrigation: the benefits, limitations, and opportunities. Horticulturae 4 (3), 23. https://doi. org/10.3390/horticulturae4030023.

Shahzadi, R., Ferzund, J., Tausif, M., Asif, M., 2016. Internet of things-based expert system for smart agriculture. Int. J. Adv. Comput. Sci. Appl. 7 (9). https://doi.org/10. 14569/ijacsa.2016.070947.

Shannon, D.K., Clay, D.E., Sudduth, K.A., 2018. An introduction to precision agriculture. American Society of Agronomy, Crop Science Society of America, and Soil.

Shibusawa, S., 2001. Precision farming approaches to small-farm agriculture. Elsevier-2nd IFAC-CIGR Workshop on Intelligent Control and Agricultural Applications [Preprints], Bali, Indonesia., 34(11), 1–10. https://doi.org/https://doi.org/10.1016/ S1474-6670(17)34099-5.

Shigeta, R., Kawahara, Y., Goud, G.D., Naik, B.B., 2018. Capacitive-touch-based soil monitoring device with exchangeable sensor probe. In: 2018 IEEE SENSORS, IEEE, pp. 1–4. https://doi.org/DOI:10.1109/icsens.2018.8589698.

Shukri Bin Zainal Abidin, Shibusawa, S., Ohaba, M., Qichen, L., Kodaira, M., 2012. Transient water flow model in a soil-plant system for subsurface precision irrigation. In: Proceedings of the 13th International Conference on Precision Agriculture (ICPA 2012), pp. 1–8.

Singh, S.N., Jha, R., 2012. Optimal design of solar powered fuzzy control irrigation system for cultivation of green vegetable plants in rural India. In: 1st Int’l Conf. on Recent Advances in Information Technology | RAIT-2012 |. https://doi.org/10.1109/RAIT.2012.6194541.

Smith, R.J., Baillie, J.N., Mccarthy, A.C., Raine, S.R., Baillie, C.P., 2010. Review of Precision Irrigation Technologies and their Application. National Centre for Engineering in Agriculture University of Southern Queensland Toowoomba.

Shukri Bin Zainal Abidin, Shibusawa, S., Ohaba, M., Qichen, L., Kodaira, M., 2012. Transient water flow model in a soil-plant system for subsurface precision irrigation. In: Proceedings of the 13th International Conference on Precision Agriculture (ICPA 2012), pp. 1–8.

Shukri, Bin Zainal Abidin, Shibusawa, S, Ohaba, M, Li, Q, Kalid, M. Bin, 2014. Capillary flow responses in a soil – plant system for modified subsurface precision irrigation. Precision Agric Open Access at Springerlink.Com 15, 17–30. https://doi.org/10. 1007/s11119-013-9309-6.

Shukri, Bin Zainal Abidin, Shibusawa, S, Ohaba, M, Li, Q, Marzuki K, B, 2014. Water uptake response of plant in subsurface precision irrigation system. Sci. Direct-Eng. Agriculture, Environ. Food 6 (3), 128–134. https://doi.org/10.1016/s1881-8366(13) 80022-5.

Sudarmaji, A., Sahirman, S., Saparso, Ramadhani, Y., 2019. Time based automatic system of drip and sprinkler irrigation for horticulture cultivation on coastal area. IOP Conference Series: Earth and Environmental Science, 250(1). https://doi.org/10. 1088/1755-1315/250/1/012074.

Tripathi, R., Shahid, M., Nayak, A., Raja, R., Panda, B., Mohanty, S., Thilagam, V.K., Kumar, A., 09 2013. Precision agriculture in India: Opportunities and challenges.

Tropea, F., 2014. Precision agriculture: an opportunity for Eu farmers- potential support with the cap 2014–2020. Europian Union 56. https://doi.org/10.2861/74.58758.

Tsang, S.W., Jim, C.Y., 2016. Applying artificial intelligence modelling to optimize green roof irrigation. Science Direct, Energy Build. 127, 360–369. https://doi.org/10.1016/j.enbuild.2016.06.005.

Uddin, M.A., Mansour, A., Le Jeune, D., Aggoune, E.H.M., 2017. Agriculture internet of things: AG-IoT. In: 2017 27th International Telecommunication Networks and Applications Conference, ITNAC 2017, vol. 2017-Janua, pp. 1–6. https://doi.org/10. 1109/ATNAC.2017.8215399.

Viani, F., Bertolli, M., Salucci, M., Polo, A., 2017. Low-cost wireless monitoring and decision support for water saving in agriculture. IEEE Sens. J. 17 (13), 4299–4309.https://doi.org/10.1109/jsen.2017.2705043.

Wasson, T., Choudhury, T., Sharma, S., Kumar, P., 2017. Integration of Rfid and sensor in agriculture using Iot. In: International Conference on Smart Technology for Smart Nation, pp. 217–222.

Wesonga, J.M., Wainaina, C., Francis, O., W., M.P., Home, P.G., 2014. Wick material and media for capillary wick based. Irrigation System in Kenya. Int. J. Sci. Res., 3(4), 613–617.

Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M., 2017. Big data in smart farming – A review. Agric. Syst. 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023.

Xingye, Zhu, Prince, Chikangaise, Weidong, Shi, Wen-Hua, Chen, Shouqi, Yuan, 2018. Review of intelligent sprinkler irrigation technologies for remote autonomous system. International journal of agricultural and biological engineering 11, 23–30. https:// doi.org/10.25165/j.ijabe.20181101.3557.

Yashaswini, L.S., Vani, H.U., Sinchana, H.N., Kumar, N., 2017. Smart automated irrigation system with disease prediction. In: 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), pp. 422–427.

Yonts, C.D., 1994. Surface irrigation. In: Encycl Agric Food Biol Eng., pp. 979–981.

Yusuke, S., 2018, June. Is Asia facing a coming water crisis?

Zacepins, A., Stalidzans, E., Meitalovs, J., 2012. Application of information technologies in precision agriculture. In: Proceedings of the 13th International Conference on

Precision Agriculture (ICPA 2012).

Zamora-izquierdo, M.A., Martı, J.A., Skarmeta, A.F., 2018. Smart farming IoT platform based on edge and cloud computing. ScienceDirect –Biosyst. Eng. 7, 4–17. https://doi.org/10.1016/j.biosystemseng.2018.10.014.

Zhang, N., Wang, M., Wang, N., 2002. Precision agriculture -a worldwide overview. Retrieved from. Comput. Electron. Agric. 522 (20150806), 475–487. http:// linkinghub.elsevier.com/retrieve/pii/S002216941401066X.

Zhang, Xiaoping, Gu, Q., Bin, S., 2004. Water saving technology for paddy rice irrigation and its popularization in China. Irrigation Drain System 18 (4), 347–356. https://doi.org/10.1007/s10795-004-2750-y 50.

Zhang, Xueyan, Zhang, J., Li, L., Zhang, Y., Yang, G., 2017. Monitoring citrus soil moisture and nutrients using an IoT based system. Sensors (Switzerland) 17 (3), 1–10. https://doi.org/10.3390/s17030447.

Zhang, Y., Wei, Z., Lin, Q., Zhang, L., Xu, J., 2018. MBD of grey prediction fuzzy-PID irrigation control technology. Desalin. Water Treat. 110, 328–336. https://doi.org/ 10.5004/dwt.2018.22336.

Zhao, J.G., J, H., W.Y., 2009. Study on precision water-saving irrigation automatic control system by plant physiology. In: 4th IEEE Conference on Industrial Electronics and Applications, pp. 1296–1300. https://doi.org/10.1109/ICIEA.2009.5138411 53.