“Molecular Docking Analysis Of Alpha-Terpineol Against Matrix Metalloproteinases”

Main Article Content

Nirmal kumar. M
Dr. A. Balasubramaniam
Dr. P. G. Mahesh

Abstract

Objectives:  The process of wound healing is crucial and complex within the human body, involving various enzymes. Increased concentrations of matrix metalloproteinases (MMPs) at the wound site lead to slowdown in the healing process. Small bioactive compounds produced from natural sources can be used to down-regulate or inhibit these over expressed MMPs. Alpha-terpineol, a mono-terpenoid alcohol with a monocyclic structure, is present in vitex negundo linn leaf, pemus boldus leaf, cajeput oil, coriander oil, and pine oil. It exhibits diverse biological uses, serving as an antioxidant, anticancer, anticonvulsant, antiulcer, anti-inflammatory, antihypertensive, and anti-nonciceptive agent. The work aims to use molecular docking to understand how alpha-terpineol binds to MMPs.


Materials and Methods: The MMPs was obtained from RCSB database and the alpha-terpineol was obtained from Pubchem. The Auto Dock software was used to create a molecular docking of alpha-terpineol activity on MMPs. Alpha-Terpineol binds to MMPs receptors. Auto Dock Vina was used to examine the binding box-related files, including a PDBQT file and PYMOL software was then used to analyze the receptor and ligand PDBPT files.


Result:  Docking tests revealed that alpha-terpineol has a great binding affinity for all four MMPs tested. MMPs 3, 8, and 12 had free binding energies of around -9.1, -10.5, and -9.7kcal/mol, respectively.


Conclusion: Therefore, alpha-terpineol can be employed to regulate the function of matrix metalloproteinases and facilitate the process of wound healing.

Downloads

Download data is not yet available.

Article Details

How to Cite
Nirmal kumar. M, Dr. A. Balasubramaniam, & Dr. P. G. Mahesh. (2024). “Molecular Docking Analysis Of Alpha-Terpineol Against Matrix Metalloproteinases”. Journal of Advanced Zoology, 45(2), 856–863. https://doi.org/10.53555/jaz.v45i2.4019
Section
Articles
Author Biographies

Nirmal kumar. M

Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology, and Advanced Studies (VISTAS), Pallavaram-600117, Chennai, Tamil Nadu, India.

Dr. A. Balasubramaniam

Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology, and Advanced Studies (VISTAS), Pallavaram-600117, Chennai, Tamil Nadu, India.

Dr. P. G. Mahesh

Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology, and Advanced Studies (VISTAS), Pallavaram-600117, Chennai, Tamil Nadu, India.

References

Yousef, H.; Alhajj, M.; Sharma, S. Anatomy, skin (integument). Epidermis 2019. Treasure Island (FL): StatPearls Publishing, https://www.ncbi.nlm.nih.gov/books/NBK470464/

Polańska, A.; Cieplewicz, P.; Adamski, Z.; Żaba, R.; Dańczak‑Pazdrowska, A. The influence of ultraviolet radiation on the aging process of the skin. Journal of Face Aesthetics 2019, 2, 28-37, https://doi.org/10.20883/jofa.8.

Mir, M.; Ali, M.N.; Barakullah, A.; Gulzar, A.; Arshad, M.; Fatima, S.; Asad, M. Synthetic polymeric biomaterials for wound healing: a review. Progress in Biomaterials 2018, 7, 1-21, https://doi.org/10.1007/s40204-018-0083-4.

Grada, A.; Obagi, Z.; Phillips, T. Management of chronic wounds in patients with pemphigus. Chronic Wound Care Management and Research 2019, 6, 89, https://doi.org/10.2147/CWCMR.S141948.

Price, A.; Naik, G.; Harding, K. Skin repair technology. In: Biomaterials for Skin Repair and Regeneration. Woodhead Publishing. 2019; 27-57, https://doi.org/10.1016/B978-0-08-102546-8.00002-9.

Perchyonok, V.T. Copazan herbal gel and wound healing in vitro: Assessment of the functional biomaterial for veterinary application. Biointerface Research in Applied Chemistry 2018, 8, 3084-3088.

Bhatt, T.; Kansagar, G.; Pincha, N.; Jamora, C. How does the skin heal wounds? Iwonder 2019, 3, 13-18. http://publications.azimpremjifoundation.org/id/eprint/2092.

Gonzalez, A.C.d.O.; Costa, T.F.; Andrade, Z.d.A.; Medrado, A.R.A.P. Wound healing - A literature review. Anais Brasileiros de Dermatologia 2016, 91, 614-620, http://dx.doi.org/10.1590/abd1806-4841.20164741.

De Sousa, F.; Rogênio, F.; Mendes, F.; Bermudez, J.; Brandão da Silva, A.; Da, M.; Vasconcelos, M.; Lourenzoni, M.; Oliveira Filho, R.; Campos, A.; De, R.; Moreira, A.; Cristina, A.; Monteiro-Moreira, O. Plant Macromolecules as Biomaterials for Wound Healing. 2019; In: Wound Healing. IntechOpen 2019; 21, https://doi.org/10.5772/intechopen.89105.

Nguyen, T.T.; Mobashery, S.; Chang, M. Roles of matrix metalloproteinases in cutaneous wound healing. Wound Healing, - New insights into Ancient Challenges 2016, 37-71, http://dx.doi.org/10.5772/64611.

Rousselle, P.; Montmasson, M.; Garnier, C. Extracellular matrix contribution to skin wound re- epithelialization. Matrix Biology 2019, 75-76, 12-26, https://doi.org/10.1016/j.matbio.2018.01.002.

Krejner, A.; Litwiniuk, M.; Grzela, T. Matrix metalloproteinases in the wound microenvironment: therapeutic perspectives. Chronic Wound Care Management and Research 2016, 23, 29-39, https://doi.org/10.2147/CWCMR.S73819.

Ibrahim, W.; Syaiful, M.; Doolaanea, A.A. Matrix Metalloproteinases In Cancer Biology: A Review. International medical journal Malaysia 2019, 18 147-152, https://journals.iium.edu.my/kom/index.php/imjm/article/view/75.

Jabłońska-Trypuć, A.; Matejczyk, M.; Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. Journal of Enzyme Inhibition and medicinal chemistry 2016, 31,177-183, https://doi.org/ 10.3109/14756366.2016.1161620.

Li, K.; Tay, F.R.; Yiu, C.K.Y. The past, present and future perspectives of matrix metalloproteinase inhibitors. Pharmacology & Therapeutics 2020, 207, https://doi.org/10.1016/j.pharmthera.2019.107465.

Selvaraj, G.; Kaliamurthi, S.; Thiruganasambandam, R. Molecular docking studies of rutin on matrix metalloproteinase. Insights Biomed 2016, 1(1).

Lallemand, L.A.; Zubieta, C.; Lee, S.G.; Wang, Y.; Acajjaoui, S.; Timmins, J.; McSweeney, S.; Jez, J.M.; McCarthy, J.G.; McCarthy, A.A. A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee. Plant Physiology 2012, 160, 249–260, https://doi.org/10.1104/pp.112.202051.

Ibrahim, N.; Wong, K.S.; Mohamed, N.I.; Mohamed, N.; Chin, K.-Y.; Ima-Nirwana, S.; Shuid, N.A. Wound Healing Properties of Selected Natural Products. International Journal of Environmental Research and Public Health 2018, 15, https://doi.org/10.3390/ijerph15112360.

Hassan, A., Ullah, H. IsrarMatejczyk, M., The antioxidant activity and phytochemical analysis of medicinal plant Veronica biloba. Letter in applied nanaoscience. 2019. 8 (4), 732 – 738. https://doi.org/10.33263/LIANBS84.732738

Christina khaleel, Nurhayat Tabanca, Gerhard Buchbauer, α-Terpineol, a natural monoterpene: A reveiwof its biological properties, https://doi.org/10.1515/chem-2018-0040 received December 28, 2017; accepted March 3, 2018

https://pubchem.ncbi.nlm.nih.gov/compound/alpha-TERPINEOL

Suganthi N. and Sonal Dubey, Phytochemical constituents and pharmacological activities of Vitex negundo Linn, www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2016, 8(2):800-807

De Oliveira, M.G.; Marques, R.B.; de Santana, M.F.; Santos, A.B.; Brito, F.A.; Barreto, E.O.; De Sousa, D.P.; Almeida, F.R.; Badauê-Passos, D., Jr.; Antoniolli, A.R.; et al. α-terpineol reduces mechanical hypernociception and inflammatory response. Basic Clin. Pharm. Toxicol. 2012, 111, 120–125.

Villegas, L.F.; Marçalo, A.; Martin, J.; Fernández, I.D.; Maldonado, H.; Vaisberg, A.J.; Hammond, G.B. (+)-epi-α-Bisbolol is the wound-healing principle of Peperomia. galioides: Investigation of the in vivo wound-healing activity of related terpenoids. J. Nat. Prod. 2001, 64, 1357–1359.

Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies 2004, 1, 337-341, https://doi.org/10.1016/j.ddtec.2004.11.007.

Dhanaraj, V.; Williams, M.G.; Ye, Q.; Pavlovsky, A.; Rubin, J.R.; Skeean, R.W. X-ray Structure of Gelatinase A Catalytic Domain Complexed with a Hydroxamate Inhibitor. Croatica chemica acta 1999, 72, 575–591.

Hofmann, E.; Zerbe, P.; Schaller, F. The Crystal Structure of <em>Arabidopsis thaliana</em> Allene Oxide Cyclase: Insights into the Oxylipin Cyclization Reaction. The Plant Cell 2006, 18, 3201-3217, https://doi.org/10.1105/tpc.106.043984.

Koteswara Reddy, G.; Nagamalleswara Rao, K.; Yarrakula, K. Insights into structure and function of 30S Ribosomal Protein S2 (30S2) in Chlamydophila pneumoniae: A potent target of pneumonia. Computational Biology and Chemistry 2017, 66, 11-20, https://doi.org/10.1016/j.compbiolchem.2016.10.014.

Navia, M.A.; McKeever, B.M.; Springer, J.P.; Lin, T.Y.; Williams, H.R.; Fluder, E.M.; Dorn, C.P.; Hoogsteen, K. Structure of human neutrophil elastase in complex with a peptide chloromethyl ketone inhibitor at 1.84-A resolution. Proceedings of the National Academy of Sciences 1989, 86, 7–11, https://doi.org/10.1073/pnas.86.1.7.

Caley, M.P.; Martins, V.L.C.; O'Toole, E.A. Metalloproteinases and Wound Healing. Adv Wound care (New Rochelle) 2015, 4, 225-234, https://doi.org/10.1089/wound.2014.0581.

Wlaschek, M.; Singh, K.; Sindrilaru, A.; Crisan, D.; Scharffetter-Kochanek, K. Iron and iron-dependent reactive oxygen species in the regulation of macrophages and fibroblasts in non-healing chronic wounds. Free Radical biology and medicine 2019, 133,262-275, https://doi.org/10.1016/j.freeradbiomed.2018.09.036.

Zhou, L.; Ren, M.; Zeng, T.; Wang, W.; Wang, X.; Hu, M.; Su, S.; Sun, K.; Wang, C.; Liu, J.; Yang, C.; Yan, L. TET2-interacting long noncoding RNA promotes active DNA demethylation of the MMP-9 promoter

Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nature Chemistry 2012, 4, 90-98, https://doi.org/10.1038/nchem.1243.

Kähäri, V.M.; Saarialho-Kere, U. Matrix metalloproteinases and their inhibitors in tumour growth and invasion. Ann Med. 1999, 31, 34-45, https://doi.org/10.3109/07853899909019260.

Danielsen, P.L.; Holst, A.V.; Maltesen, H.R.; Bassi, M.R.; Holst, P.J.; Heinemeier, K.M.; Olsen, J.; Danielsen, C.C.; Poulsen, S.S.; Jorgensen, L.N.; Ågren, M.S. Matrix metalloproteinase-8 overexpression prevents proper tissue repair. Surgery 2011, 150, 897-906, https://doi.org/10.1016/j.surg.2011.06.016.

Chan, M.F.; Li, J.; Bertrand, A.; Casbon, A.-J.; Lin, J.H.; Maltseva, I.; Werb, Z. Protective effects of matrix metalloproteinase-12 following corneal injury. Journal of Cell Science 2013, 126, 948–3960, https://doi.org/10.1242/jcs.128033.