Interplay of Transcriptional Factors In Beta Cells Development and Maturation

Main Article Content

Smita R. Pillewan
Vandana S. Nikam

Abstract

Diabetes is a group of metabolic disorders resulting from defects in insulin secretion, insulin action, or both. It is characterized by high blood sugar levels over a prolonged period of time with disturbances of carbohydrate, protein, and fat metabolism. It is a global disorder affecting about half a billion or 536.6 million people worldwide, which is said to rise to 783.2 million by 2045. To maintain normoglycemia, pancreatic β-cells release insulin in proportion to the amounts of nutrients in the blood. Through a process of postnatal development, β-cells learn to connect insulin release to food cues. The insulin secretory response in mature β-cells adjusts to alterations in nutritional status. The interaction between transcriptional programs specific to each cell type and external stimuli is necessary for both β-cell maturation and functional adaptation. In this review, we examine the growing data that suggests lineage-determining and signal-dependent transcription factors (LDTFs and SDTFs, respectively) work together to regulate β-cell activity during development and homeostasis. In-depth knowledge of β-cell SDTFs and their corresponding signals would clarify the processes involved in β-cell maturation and functional adaptation, directly affecting diabetes treatments and the production of mature β-cells from stem cells.

Downloads

Download data is not yet available.

Article Details

How to Cite
Smita R. Pillewan, & Vandana S. Nikam. (2022). Interplay of Transcriptional Factors In Beta Cells Development and Maturation. Journal of Advanced Zoology, 43(1), 487–498. https://doi.org/10.53555/jaz.v43i1.3979
Section
Articles
Author Biographies

Smita R. Pillewan

Department of Pharmacology, STES’s, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune 411048, India

Vandana S. Nikam

Department of Pharmacology, Modern College of Pharmacy (For Ladies), Savitribai Phule Pune University, Pune 411048, India

References

International Diabetes Federation. IDF Diabetes Atlas, 7 edn. International Diabetes Federation: Brussels, Belgium, 2015

The Bastidas-ponce, A., Scheibner, K., Lickert, H., & Bakhti, M. (2017). Cellular and molecular mechanisms coordinating pancreas development, 1, 2873–2888.

Derrickson BH, Tortora GJ. Tortora’s Principles of anatomy & physiology. 2017.

Chawla, P., Delgadillo Silva, L. F., & Ninov, N. (2020). Insights on β-cell regeneration from the zebrafish shoal: From generation of cells to functional integration. Current Opinion in Physiology, 14, 27–34. https://doi.org/10.1016/j.cophys.2019.11.009

Zhu, Y., Liu, Q., Zhou, Z., & Ikeda, Y. (2017). PDX1, Neurogenin-3, and MAFA: Critical transcription regulators for beta cell development and regeneration. Stem Cell Research & Therapy, 8(1), 240. https://doi.org/10.1186/s13287-017-0694-z

Jiang, Z., Song, J., Qi, F., Xiao, A., An, X., Liu, N., Zhu, Z., Zhang, B., & Lin, S. (2008). Exdpf Is a Key Regulator of Exocrine Pancreas Development Controlled by Retinoic Acid and ptf1a in Zebrafish. PLoS Biology, 6(11), e293. https://doi.org/10.1371/journal.pbio.0060293

Kim, H. J., Sumanas, S., Palencia-Desai, S., Dong, Y., Chen, J.-N., & Lin, S. (2006). Genetic Analysis of Early Endocrine Pancreas Formation in Zebrafish. Molecular Endocrinology, 20(1), 194–203. https://doi.org/10.1210/me.2005-0189

Kinkel, M. D., & Prince, V. E. (2009). On the diabetic menu: Zebrafish as a model for pancreas development and function. BioEssays, 31(2), 139–152. https://doi.org/10.1002/bies.200800123

Jörgens, K., Hillebrands, J.-L., Hammes, H.-P., & Kroll, J. (2012). Zebrafish: A Model for Understanding Diabetic Complications. Experimental and Clinical Endocrinology & Diabetes, 120(04), 186–187. https://doi.org/10.1055/s-0032-1304565

Musson, M. C., Jepeal, L. I., Mabray, P. D., Zhdanova, I. V., Cardoso, W. V., & Wolfe, M. M. (2009). Expression of glucose-dependent insulinotropic polypeptide in the zebrafish. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 297(6), R1803–R1812. https://doi.org/ 10.1152/ajpregu.00288.2009

Tarifeño-Saldivia, E., Lavergne, A., Bernard, A., Padamata, K., Bergemann, D., Voz, M. L., Manfroid, I., & Peers, B. (2017). Transcriptome analysis of pancreatic cells across distant species highlights novel important regulator genes. BMC Biology, 15(1), 21. https://doi.org/10.1186/s12915-017-0362-x

Pauls, S., Zecchin, E., Tiso, N., Bortolussi, M., & Argenton, F. (2007). Function and regulation of zebrafish nkx2.2a during development of pancreatic islet and ducts. Developmental Biology, 304(2), 875–890. https://doi.org/10.1016/j.ydbio.2007.01.024

Conrad, E., Dai, C., Spaeth, J., Guo, M., Cyphert, H. A., Scoville, D., Carroll, J., Yu, W.-M., Goodrich, L. V., Harlan, D. M., Grove, K. L., Roberts, C. T., Powers, A. C., Gu, G., & Stein, R. (2016). The MAFB transcription factor impacts islet α-cell function in rodents and represents a unique signature of primate islet β-cells. American Journal of Physiology-Endocrinology and Metabolism, 310(1), E91–E102. https://doi.org/10.1152/ajpendo.00285.2015

Wen, J. H., Chen, Y. Y., Song, S. J., Ding, J., Gao, Y., Hu, Q. K., Feng, R. P., Liu, Y. Z., Ren, G. C., Zhang, C. Y., Hong, T. P., Gao, X., & Li, L. S. (2009). Paired box 6 (PAX6) regulates glucose metabolism via proinsulin processing mediated by prohormone convertase 1/3 (PC1/3). Diabetologia, 52(3), 504–513. https://doi.org/10.1007/s00125-008-1210-x

Cruz, S. A., Tseng, Y.-C., Kaiya, H., & Hwang, P. P. (2010). Ghrelin affects carbohydrate-glycogen metabolism via insulin inhibition and glucagon stimulation in the zebrafish (Danio rerio) brain. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 156(2), 190–200. https://doi.org/10.1016/j.cbpa.2010.01.019

Scoville, D. W., Kang, H. S., & Jetten, A. M. (2020). Transcription factor GLIS3: Critical roles in thyroid hormone biosynthesis, hypothyroidism, pancreatic beta cells and diabetes. Pharmacology & Therapeutics, 215, 107632. https://doi.org/10.1016/j.pharmthera.2020.107632

Elo, B., Villano, C. M., Govorko, D., & White, L. A. (2007). Larval zebrafish as a model for glucose metabolism: Expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti-diabetic compounds. Journal of Molecular Endocrinology, 38(4), 433–440. https://doi.org/10.1677/JME-06-0037

Aguayo-Mazzucato C, Bonner-Weir S. Pancreatic β Cell Regeneration as a Possible Therapy for Diabetes. Cell Metabolism. 2018; 27:57–67. doi: 10.1016/j.cmet.2017.08.007.

Beer RL, Parsons MJ, Rovira M. Centroacinar cells: At the center of pancreas regeneration. Developmental Biol. 2016; 413:8–15. doi: 10.1016/j.ydbio.2016.02.027.

Benthuysen JR, Carrano AC, Sander M. Advances in β cell replacement and regeneration strategies for treating diabetes. J Clin Invest. 2016; 126:3651–3660. doi: 10.1172/JCI87439

Afelik, S., & Jensen, J. Notch signaling in the pancreas: Patterning and cell fate specification. Wiley Interdisciplinary Reviews. Developmental Biology, 2013; 2:531–544. https://doi.org/10.1002/wdev.99

Aguayo-Mazzucato, C., Koh, A., El Khattabi, I., Li, W. C., Toschi, E., Jermendy, A.,Bonner-Weir, S. Mafa expression enhances glucose-responsive insulin secretion in neonatal rat beta cells. Diabetologia, 2011;54:583–593. https://doi.org/10.1007/s00125-010-2026-z

Andersson, O., Adams, B. A., Yoo, D., Ellis, G. C., Gut, P., Anderson, R. M. Stainier, D. Y. Adenosine signaling promotes regeneration of pancreatic beta cells in vivo. Cell Metabolism, 2012; 15:885–894. https://doi.org/10.1016/j.cmet.2012.04.018

Biemar, F., Argenton, F., Schmidtke, R., Epperlein, S., Peers, B., & Driever, W. (2001). Pancreas development in zebrafish: Early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Developmental Biology, 230, 189–203. https://doi.org/ 10.1006/dbio.2000.0103

Sun, Z., & Hopkins, N. (2001). Vhnf1 , the MODY5 and familial GCKD-associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain. Genes & Wallace, K. N., & Pack, M. (2003). Unique and conserved aspects of gut development in zebrafish. Developmental Biology, 255(1), 12–29. https://doi.org/10.1016/S0012-1606(02)00034-9

Development, 15(23), 3217–3229. https://doi.org/10.1101/gad946701

Wendik, B., Maier, E., & Meyer, D. (2004). Zebrafish mnx genes in endocrine and exocrine pancreas formation. Developmental Biology, 268(2), 372–383. https://doi.org/10.1016/j.ydbio.2003.12.026

Wilfinger, A., Arkhipova, V., & Meyer, D. (2013). Cell type and tissue specific function of islet genes in zebrafish pancreas development. Developmental Biology, 378(1), 25–37. https://doi.org/10.1016/ j.ydbio.2013.03.009

Zecchin, E., Mavropoulos, A., Devos, N., Filippi, A., Tiso, N., Meyer, D., Peers, B., Bortolussi, M., & Argenton, F. (2004). Evolutionary conserved role of ptf1a in the specification of exocrine pancreatic fates. Developmental Biology, 268(1), 174–184. https://doi.org/10.1016/j.ydbio.2003.12.016

Mavropoulos, A., Devos, N., Biemar, F., Zecchin, E., Argenton, F., Edlund, H., Motte, P., Martial, J. A., & Peers, B. (2005). Sox4b is a key player of pancreatic α cell differentiation in zebrafish. Developmental Biology, 285(1), 211–223. https://doi.org/10.1016/j.ydbio.2005.06.024

Dalgin, G., & Prince, V. E. (2015). Differential levels of Neurod establish zebrafish endocrine pancreas cell fates. Developmental Biology, 402(1), 81–97. https://doi.org/10.1016/j.ydbio.2015.03.007

Jiang, Z., Song, J., Qi, F., Xiao, A., An, X., Liu, N., Zhu, Z., Zhang, B., & Lin, S. (2008). Exdpf Is a Key Regulator of Exocrine Pancreas Development Controlled by Retinoic Acid and ptf1a in Zebrafish. PLoS Biology, 6(11), e293. https://doi.org/10.1371/journal.pbio.0060293

Scoville, D. W., Kang, H. S., & Jetten, A. M. (2020). Transcription factor GLIS3: Critical roles in thyroid hormone biosynthesis, hypothyroidism, pancreatic beta cells and diabetes. Pharmacology & Therapeutics, 215, 107632. https://doi.org/10.1016/j.pharmthera.2020.107632