Review On Effect Of Curcumin In The Treatment Of Cancer

Main Article Content

Tasneem Amina
Dr. Yoganand Moolemath

Abstract

Caner is a devastating disease condition and is the second most life taking disease globally. After decades of research in this field we are still looking for therapeutical agents with the most efficacies and least toxicities. Curcumin is one of the cancer therapeutic agents that is derived from the Curcuma longa(turmeric) plant, and still in vitro and in vivo research is going on to find its beneficial effects on various cancers. Due to its potency to affect multiple targets of different cellular pathways. It is considered a promising agent to tackle various cancers alone or in combination with the existing chemotherapies. This review covers basic properties, mechanism of action, potential targets of curcumin. This study aims to evaluate the antiproliferative property of curcuminoids in three human cancer cell lines. The study consists of a) Establishing inhibition-concentration 50% (IC50), by Methyl thiazole tetrazolium (MTT) reduction method and b) Viable Cell Count by Trypan blue exclusion method.

Downloads

Download data is not yet available.

Article Details

How to Cite
Tasneem Amina, & Dr. Yoganand Moolemath. (2023). Review On Effect Of Curcumin In The Treatment Of Cancer. Journal of Advanced Zoology, 44(S1), 1266–1287. https://doi.org/10.53555/jaz.v44iS1.3971
Section
Articles
Author Biographies

Tasneem Amina

Department of Zoology, Al Ameen Arts, Science and Commerce College, Hosur Road, Bangalore- 27.

Dr. Yoganand Moolemath

Professor Al Ameen college of Pharmacy,  Hosur Road, Bangalore- 27.

References

Abe, Y., Hashimoto, S., and Horie, T., Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages, Pharmacol. Res., 39 (1), 41–47, 1999.

Adelaide, J., Monges, G., Derderian, C., Seitz, J.F., and Birnbaum, D., Oesophageal cancer and amplification of the human cyclin D gene CCND1/PRAD1, Br. J. Cancer, 71 (1), 64–68, 1995.

Aggarwal, B.B.,Takada, Y., and Oommen, O.V. From chemoprevention to chemotherapy. Expert Opin. Investig.Drugs. 13 (10), 1327–1338.

Ammon, H.P. and Wahl, M.A., Pharmacology of Curcuma longa, Planta Med., 57 (1), 1–7, 1991.

Anto, R.J., Mukhopadhyay, A., Denning, K., and Aggarwal, B.B., Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl, Carcinogenesis, 23 (1), 143–150, 2002.

Aplin, A.E., Howe, A., Alahari, S.K., and Juliano, R.L. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev. 50, 197–263, 1998.

Arbiser, J.L., Klauber, N., Rohan, R., van Leeuwen, R., Huang, M.T., Fisher, C., Flynn, E., and Byers, H.R., Curcumin is an in vivo inhibitor of angiogenesis, Mol. Med., 4 (6) 376–383, 1998.

Ashkenazi, A., and Dixit, V.M. Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol. 11, 255–260, 1999.

Baldin, V., Lukas, J., Marcote, M.J ., Pagano, M., and Draetta, G., Cyclin D1 is a nuclear protein required for cell cycle progression in G1, Genes Dev., 7 (5), 812–821, 1993.

Baldwin, A.S., Control of oncogenesis and cancer therapy resistance by the transcription factor NF κB, J. Clin. Invest., 107 (3), 241–246, 2001.

Bartkova, J., Lukas, J., Muller, H., Lutzhoft, D., Strauss, M., and Bartek, J., Cyclin D1 protein expression and function in human breast cancer, Int. J. Cancer, 57 (3), 353–361, 1994.

Bharti, A.C., Donato, N., and Aggarwal, B.B., Curcumin (diferuloylmethane) inhibits constitutive and interleukin-6-inducible STAT3 phosphorylation in human multiple myeloma cells, J. Immunol., 3865–3871, 2003.

Bharti, A.C., Donato, N., Singh, S., and Aggarwal, B.B., Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and I-κB αkinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis, Blood, 101 (3), 1053–1062, 2003.

Bishop, J.M., and Weinberg, R.A., eds. Molecular Oncology (New York: Scientific American Inc.), 1996.

Bodnar, A.G., Ouellete, M., Frolkis, M., Holt, S.E., Chiu, C., Morin, G.B., Harley, C.B., Shay, J.W., Lichtsteiner, S., and Wright, W.E. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352, 1998.

Bouck, N., Stellmach, V., and Hsu, S.C. How tumors become angiogenic. Adv. Cancer Res. 69, 135–174, 1996.

Bryan, T.M., and Cech, T.R. Telomerase and the maintenance of chromosome ends. Curr. Opin. Cell Biol. 11, 318–324, 1999.

Bryan, T.M., Englezou, A., Gupta, J., Bacchetti, S., and Reddel, R.R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 14, 4240–4248, 1995.

Bull, H.A., Brickell, P.M., and Dowd, P.M. Src-related protein tyrosine kinases are physically associated with the surface antigen CD36 in human dermal microvascular endothelial cells. FEBS Lett. 351, 41–44, 1994.

Busquets, S., Carbo, N., Almendro, V., Quiles, M.T., Lopez-Soriano, F.J., and Argiles, J.M., Curcumin, a natural product present in turmeric, decreases tumor growth but does not behave as an anticachectic compound in a rat model, Cancer Lett., 167 (1), 33–38, 2001.

Cantley, L.C., and Neel, B.G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl. Acad. Sci. USA 96, 4240–4245, 1999.

Caputi, M., Groeger, A.M., Esposito, V., Dean, C., De Luca, A., Pacilio, C., Muller, M.R., Giordano, G.G., Baldi, F., Wolner, E., and Giordano, A., Prognostic role of cyclin D1 in lung cancer: relationship to proliferating cell nuclear antigen, Am. J. Respir. Cell. Mol. Biol., 20 (4), 746–750, 1999.

Chambers, A.F., and Matrisian, L.M. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 89, 1260–1270, 1997.

Chan, M.M., Huang, H.I., Fenton, M.R., and Fong, D., In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties, Biochem. Pharmacol., 55 (12), 1955–1962, 1998.

Chen, H., Zhang, Z.S., Zhang, Y.L., and Zhou, D.Y., Curcumin inhibits cell proliferation by interfering with the cell cycle and inducing apoptosis in colon carcinoma cells, Anticancer Res., 19 (5A), 3675–3680, 1999.

Cheng, A.L., Hsu, C.H., Lin, J.K., Hsu, M.M., Ho, Y.F., Shen, T.S., Ko, J.Y., Lin, J.T., Lin, B.R.,Ming-Shiang, W., Yu, H.S., Jee, S.H., Chen, G.S., Chen, T.M., Chen, C.A., Lai, M.K., Pu, Y.S.,Pan, M.H., Wang, Y.J., Tsai, C.C., and Hsieh, C.Y., Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions, Anticancer Res., 21 (4B), 2895–2900, 2001.

Chin, L., Pomerantz, J., and DePinho, R.A. The INK4a/ARF tumor suppressor: one gene—two products—two pathways. Trends Biochem. Sci. 23, 291–296, 1998.

Christofori, G., Naik, P., and Hanahan, D. A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature 369, 414–418, 1994.

Chuang, S.E., Cheng, A.L., Lin, J.K., and Kuo, M.L., Inhibition by curcumin of diethylnitrosamine induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats, Food Chem. Toxicol., 38 (11): 991–995, 2000.

Conney, A.H., Lysz, T., Ferraro, T., Abidi, T.F., Manchand, P.S., Laskin, J.D., and Huang, M.T.,Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin, Adv. Enzyme Regul., 31, 385–396, 1991.

Counter, C.M., Hahn, W.C., Wei, W., Dickinson Caddle, S., Beijersbergen, R.L., Lansdorp, P.M., Sedivy, J.M., and Weinberg, R.A. Dissociation between telomerase activity, telomere maintenance and cellular immortalization. Proc. Natl. Acad. Sci. USA 95, 14723–14728, 1998.

Coussens, L.M., and Werb, Z. Matrix metalloproteinases and the development of cancer. Chem. Biol. 3, 895–904, 1996.

Dameron, K.M., Volpert, O.V., Tainsky, M.A., and Bouck, N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582–1584, 1994.

Datto, M.B., Hu, P.P., Kowalik, T.F., Yingling, J., and Wang, X.F. The viral oncoprotein E1A blocks transforming growth factor b-mediated induction of p21WAF1/Cip1 and p15INK4B Mol. Cell. Biol. 17, 2030–2037, 1997.

DiFiore, P.P., Pierce, J.H., Kraus, M.H., Segatto, O., King, C.R., and Aaronson, S.A. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 237, 178–182, 1987.

Downward, J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell Biol. 10, 262–267, 1998.

Drobnjak, M., Osman, I., Scher, H.I., Fazzari, M., and Cordon-Cardo, C., Overexpression of cyclin D1 is associated with metastatic prostate cancer to bone, Clin. Cancer Res., 6 (5), 1891–1895, 2000.

Duvoix, A., Blasius, R., Delhalle, S., Schnekenburger, M., Morceau, F., Henry, E., Dicato, M., and Diederich, M. Chemopreventive and therapeutic effects of curcumin. Cancer Lett., 223 (2),181–190, 2005.

Dyson, N., Howley, P.M., Munger, K., and Harlow, E. The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–937, 1989.

Evan, G., and Littlewood, T. A matter of life and cell death. Science 281, 1317–1322, 1998.

Fedi, P., Tronick, S.R., and Aaronson, S.A. Growth factors. In Cancer Medicine, J.F. Holland, R.C. Bast, D.L. Morton, E. Frei,D.W. Kufe, and R.R. Weichselbaum, eds. (Baltimore, MD: Williams and Wilkins), pp. 41–64, 1997.

Fogar, P., Basso, D., Pasquali, C., De Paoli, C., Sperti, C., Roveroni, G., Pedrazzoli, G., and Plebani, M. Neural cell adhesion molecule (N-CAM) in gastrointestinal neoplasias. Anticancer Res. 17, 1227–1230, 1997.

Foley, K.P., and Eisenman, R.N. Two MAD tails: what the recent knockouts of Mad1 and Mx1 tell us about the MYC/MAX/MAD network. Biochim. Biophys. Acta 1423, 37–47, 1999.

Folkman, J. Tumor angiogenesis. In Cancer Medicine, J.F. Holland, R.C. Bast, D.L. Morton, E. Frei, D.W. Kufe, and R.R. Weichselbaum, eds. (Baltimore, MD: Williams and Wilkins), pp. 181–204, 1997.

Folkman, J., Can mosaic tumor vessels facilitate molecular diagnosis of cancer? Proc. Natl. Acad. Sci. USA, 98 (2), 398–400, 2001.

Foulds, L. The Experimental Study of Tumor Progression. Volumes I–III (London: Academic Press), 1954.

Fournier, D.B. and Gordon, G.B., COX-2 and colon cancer: Potential targets for chemoprevention, J.Cell. Biochem., 77 (S34), 97–102, 2000.

Fynan, T.M., and Reiss, M. Resistance to inhibition of cell growth by transforming growth factor-b and its role in oncogenesis. Crit. Rev. Oncog. 4, 493–540, 1993.

Gafner, S., Lee. S.K.,Cuendet. M.,Barthelemy, S., Vergnes. L., Labidalle, S.,Mehta R.G., Boone, C.W., and Pezzuto, J.M. Biological evaluation of curcumin and structural derivative in cancer chemoprevention model systems. Photochemistry, 65 (21), 2849–2859, 2004.

Gately, S., Twardowski, P., Stack, M.S., Cundiff, D.L., Grella, D., Castellino, F.J., Enghild, J., Kwaan, H.C., Lee, F., Kramer, R.A., et al. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc. Natl. Acad. Sci. USA 94, 10868–10872, 1997.

Gescher, A.J.,Sharma, R.A., and Steward, W.P. Cancer chemoprevention by dietary constituents: a tale of failure and promise. Lancet Oncol. 2 (6), 371–379, 2001.

Giancotti, F.G., and Ruoslahti, E. Integrin signaling. Science 285 1028–1032, 1999.

Giri, D.K. and Aggarwal, B.B., Constitutive activation of NF-kappaB causes resistance to apoptosis in human cutaneous T cell lymphoma HuT-78 cells. Autocrine role of tumor necrosis factor and reactive oxygen intermediates, J. Biol. Chem., 273 (22), 14008–14014, 1998.

Green, D.R., and Reed, J.C. Mitochondria and apoptosis. Science 281, 1309–1312, 1998.

Gumbiner, L.M., Gumerlock, P.H., Mack, P.C., Chi, S.G., deVere White, R.W., Mohler, J.L., Pretlow, T.G., and Tricoli, J.V., Overexpression of cyclin D1 is rare in human prostate carcinoma, Prostate, 38 (1), 40–45, 1999.

Halvorsen, T.L., Leibowitz, G., and Levine, F. Telomerase activity is sufficient to allow transformed cells to escape from crisis. Mol. Cell. Biol. 19, 1864–1870, 1999.

Han, S.S., Chung, S.T., Robertson, D.A., Ranjan, D., and Bondada, S., Curcumin causes the growth arrest and apoptosis of B cell lymphoma by downregulation of egr-1, c-myc, bcl-XL, NF-kappa B, and p53, Clin. Immunol., 93 (2), 152–161, 1999.

Hanahan, D., and Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364, 1996.

Hanahan, D., and Weinberg, R.A. The Hallmarks of Cancer. Cell 100, 57–70, 2000.

Hannon, G.J., and Beach, D. P15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371, 257–261, 1994.

Harris, C.C. p53 tumor suppressor gene: from the basic research laboratory to the clinic—an abridged historical perspective. Carcinogenesis 17, 1187–1198, 1996.

Harris, R.E., Alshafie, G.A., Abou-Issa, H., and Seibert, K., Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor, Cancer Res., 60 (8) 2101–2103, 2000.

Haung, M.T., Newmark, H.L., and Frenkel. K. Inhibitory effects of curcumin on tumorigenesis in mice. Cancer lett. 116 (2), 197–203, 1997.

Hayflick, L. Mortality and immortality at the cellular level. A review. Biochemistry 62, 1180–1190, 1997.

Hida, T., Yatabe, Y., Achiwa, H., Muramatsu, H., Kozaki, K., Nakamura, S., Ogawa, M., Mitsudomi, T., Sugiura, T., and Takahashi, T., Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas, Cancer Res., 58 (17), 3761–64, 1998.

Huang, H.C., Jan, T.R., and Yeh, S.F., Inhibitory effect of curcumin, an anti-inflammatory agent, on vascular smooth muscle cell proliferation, Eur. J. Pharmacol., 221 (2–3), 381–384, 1992.

Huang, M.T., Lou, Y.R., Ma, W., Newmark, H.L., Reuhl, K.R., and Conney, A.H., Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice, Cancer Res., 54 (22), 5841–5847, 1994.

Huang, M.T., Lou, Y.R., Xie, J.G., Ma, W., Lu, Y.P., Yen, P., Zhu, B.T., Newmark, H., and Ho, C.T., Effect of dietary curcumin and dibenzoylmethane on formation of 7,12-dimethylbenz[a]anthracene induced mammary tumors and lymphomas/leukemias in Sencar mice, Carcinogenesis, 19 (9), 1697–1700, 1998.

Huang, M.T., Newmark, H.L., and Frenkel, K., Inhibitory effects of curcumin on tumorigenesis in mice, J. Cell. Biochem. Suppl., 27, 26–34, 1997.

Hynes, R.O., and Wagner, D.D. Genetic manipulation of vascular adhesion molecules in mice. J. Clin. Invest. 98, 2193–2195, 1996.

Iademarco, M.F., Barks, J.L., and Dean, D.C., Regulation of vascular cell adhesion molecule-1 expression by IL-4 and TNF-alpha in cultured endothelial cells, J. Clin. Invest., 95 (1), 264–271, 1995.

Inano, H., Onoda, M., Inafuku, N., Kubota, M., Kamada, Y., Osawa, T., Kobayashi, H., and Wakabayashi, K., Chemoprevention by curcumin during the promotion stage of tumorigenesis of mammary gland in rats irradiated with gamma-rays, Carcinogenesis, 20 (6), 1011–1018, 1999.

Ishizaki, Y., Cheng, L., Mudge, A.W., and Raff, M.C. Programmed cell death by default in embryonic cells, fibroblasts, and cancer cells. Mol. Biol. Cell 6, 1443–1458, 1995.

Jain, S.K. and DeFilipps, R.A., Medicinal Plants of India, Reference Publications, Algonac, MI, p. 120, 1991.

Johnsen, M., Lund, L.R., Romer, J., Almholt, K., and Dano K. Cancer invasion and tissue remodeling: common themes in proteolytic matrix degradation. Curr. Opin. Cell Biol. 10, 667–671, 1998.

Kawamori, T., Lubet, R., Steele, V.E., Kelloff, G.J., Kaskey, R.B., Rao, C.V., and Reddy, B.S., Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer, Cancer Res., 59 (3), 597–601, 1999.

Kerr, J.F., Wyllie, A.H., and Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257, 1972.

Kim, J.M., Araki, S., Kim, D.J., Park, C.B., Takasuka, N., Baba-Toriyama, H., Ota, T., Nir, Z., Khachik, F., Shimidzu, N., Tanaka, Y., Osawa. T., Uraji, T., Murakoshi, M., Nishino, H., and Tsuda, H., Chemopreventive effects of carotenoids and curcumins on mouse colon carcinogenesis after 1,2-dimethylhydrazine initiation, Carcinogenesis, 19 (1), 81–85, 1998.

Korutla, L. and Kumar, R., Inhibitory effect of curcumin on epidermal growth factor receptor kinase activity in A431 cells, Biochim. Biophys. Acta, 1224 (3), 597–600, 1994.

Kumar, A., Dhawan, S., Mukhopadhyay, A., and Aggarwal, B.B., Human immunodeficiency virus-1-tat induces matrix metalloproteinase-9 in monocytes through protein tyrosine phosphatase-mediated activation of nuclear transcription factor NF-kappaB, FEBS Lett., 462 (1–2), 140–144, 1999.

Kuo, M.L., Huang, T.S., and Lin, J.K., Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells, Biochim. Biophys. Acta, 1317 (2), 95–100, 1996.

Kwon, Y., Malik, M., and Magnuson, B.A. Inhibition of colonic aberrant crypt foci by curcumin in rats is affected by age. Nutr. Cancer. 48(1), 37–3, 2004.

Lee, H., Arsura, M., Wu, M., Duyao, M., Buckler, A.J., and Sonenshein, G.E., Role of Rel-related factors in control of c-myc gene transcription in receptor-mediated apoptosis of the murine B cell WEHI 231 line, J. Exp. Med., 181 (3), 1169–1177, 1995.

Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331, 1997.

Lin, L.I., Ke, Y.F., Ko, Y.C., and Lin, J.K., Curcumin inhibits SK-Hep-1 hepatocellular carcinoma cell invasion in vitro and suppresses matrix metalloproteinase-9 secretion, Oncology, 55 (4) 349–353, 1998.

Lu, Y.P., Chang, R.L., Lou, Y.R., Huang, M.T., Newmark, H.L., Reuhl, K.R., and Conney, A.H., Effect of curcumin on 12-O-tetradecanoylphorbol-13-acetate- and ultraviolet B light-induced expression of c-Jun and c-Fos in JB6 cells and in mouse epidermis, Carcinogenesis, 15 (10), 2363–2370, 1994.

Lukashev, M.E., and Werb, Z. ECM signaling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol. 8, 437–441, 1998.

Markowitz, S., Wang, J., Meyeroff, L., Parsons, R., Sun, L., Lutterbaugh, J., Fan, R., Zborowska, E., Kinzler, K., Vogelstein, B., et al. Inactivation of the type II TGF-b receptor in colon cancer cells with microsatellite instability. Science 268, 1336–1338, 1995.

Medema, R.H., and Bos, J.L. The role of p21-ras in receptor tyrosine kinase signaling. Crit. Rev. Oncog. 4, 615–661, 1993.

Mehta, K., Pantazis, P., McQueen, T., and Aggarwal, B.B., Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines, Anticancer Drugs, 8 (5), 470–481, 1997.

Menon, L.G., Kuttan, R., and Kuttan, G., Anti-metastatic activity of curcumin and catechin, Cancer Lett., 141 (1–2), 159–165, 1999.

Menon, L.G., Kuttan, R., and Kuttan, G., Inhibition of lung metastasis in mice induced by B16F10 melanoma cells by polyphenolic compounds, Cancer Lett., 95 (1–2), 221–225, 1995.

Mohan, R., Sivak, J., Ashton, P., Russo, L.A., Pham, B.Q., Kasahara, N., Raizman, M.B., and Fini, M.E., Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B, J. Biol. Chem., 275 (14), 10405–10412, 2000.

Mori, H., Niwa, K., Zzheng, Q., Yamada, Y., Sakata, K., and Yoshimi, N. Cell proliferation in cancer prevention; effects of preventive agents on estrogen-related endometrial carcinogenesis model and on an in vitro model in human colorectal cells. Mutat. Res. 480-481, 201–207, 2001.

Moses, H.L., Yang, E.Y., and Pietenpol, J.A. (1990). TGF-b stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63, 245–247.

Mukhopadhyay, A., Bueso-Ramos, C., Chatterjee, D., Pantazis, P., and Aggarwal, B.B., Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines, Oncogene, 20 (52), 7597–7609, 2001.

Nadkarni, A.K., Indian Materia Medica, Vol. 1, Popular Book Depot, Bombay, 1954.

Nishida, N., Fukuda, Y., Komeda, T., Kita, R., Sando, T., Furukawa, M., Amenomori, M., Shibagaki, I., Nakao, K., Ikenaga, M. et al., Amplification and overexpression of the cyclin D1 gene in aggressive human hepatocellular carcinoma, Cancer Res., 54 (12), 3107–3110, 1994.

Ohene-Abuakwa, Y. and Pignatelli, M., Adhesion molecules in cancer biology, Adv. Exp. Med. Biol., 465, 115–126, 2000.

Pahl, H.L., Activators and target genes of Rel/NF-kappaB transcription factors, Oncogene, 18 (49), 6853–6866, 1999.

Pan, M.H., Lin-Shiau, S.Y., and Lin, J.K., Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of I-kappaB kinase and NFkappaB activation in macrophages, Biochem. Pharmacol., 60 (11), 1665–1676, 2000.

Park, M.J., Kim, E.H., Park, I.C., Lee, H.C., Woo, S.H., Lee, J.Y., Hong, Y.J., Rhee, C.H., Choi, S.H., Shim, B.S., Lee, S.H., and Hong, S.I., Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1 and p53, Int. J. Oncol., 21 (2), 379–383, 2002.

Perkins, S., Verschoyle, R.D., Hill, K., Parveen, I., Threadgill, M.D., Sharma, R.A., Williams, M.L., Steward, W.P., and Gescher, A.J. Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol. Biomarkers Prev. 11 (6), 535–540, 2002.

Piper, J.T., Singhal, S.S., Salameh, M.S., Torman, R.T., Awasthi, Y.C., and Awasthi, S., Mechanisms of anticarcinogenic properties of curcumin: the effect of curcumin on glutathione linked detoxification enzymes in rat liver, Int. J. Biochem. Cell. Biol., 30 (4), 445–456, 1998.

Plummer, S.M., Holloway, K.A., Manson, M.M., Munks, R.J., Kaptein, A., Farrow, S., and Howells, L., Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex, Oncogene, 18 (44), 6013–6020, 1999.

Ramachandran, C. and You, W., Differential sensitivity of human mammary epithelial and breast carcinoma cell lines to curcumin, Breast Cancer Res. Treat., 54 (3), 269–278, 1999.

Rao, C.V., Rivenson, A., Simi, B., and Reddy, B.S., Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound, Cancer Res., 55 (2), 259–266, 1995.

Reddy, B.S., Hirose, Y., Lubet, R., Steele, V., Kelloff, G., Paulson, S., Seibert, K., and Rao, C.V., Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis, Cancer Res., 60 (2), 293–297, 2000.

Renan, M.J. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol. Carcinogenesis 7, 139–146, 1993.

Roy, M., Chakraborty, S., Siddiqi, M., and Bhattacharya, R.K. Induction of Apoptosis in Tumor Cells by Natural Phenolic Compounds. Asian Pac. J. Cancer Prev., 3 (1), 61–67, 2002.

Ruby, A.J., Kuttan, G., Babu, K.D., Rajashekharan, K.N., and Kuttan, R. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett. 94 (1), 79–83, 1995.

Schutte, M., Hruban, R., Hedrick, L., Cho, K., Nadasdy, G., Weinstein, C., Bova, G., Isaacs, W., Cairns, P., Nawroz, H., et al. DPC4 gene in various tumor types. Cancer Res. 56, 2527–2530, 1996.

Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. Oncogeneic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4A. Cell 88, 593–602, 1997.

Shay, J.W., and Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791, 1997.

Simon, A., Allais, D.P., Duroux, J.L., Basly, J.P., Durand-Fontanier, S., and Delage, C., Inhibitory effect of curcuminoids on MCF-7 cell proliferation and structure-activity relationships, Cancer Lett., 129 (1), 111–116, 1998.

Singh, A.K., Sidhu, G.S., Deepa, T., and Maheshwari, R.K., Curcumin inhibits the proliferation and cell cycle progression of human umbilical vein endothelial cell, Cancer Lett., 107 (1), 109–115, 1996.

Singh, R.K., Gutman, M., Bucana, C.D., Sanchez, R., Llansa, N., and Fidler, I.J. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc. Natl. Acad. Sci. USA 92, 4562–4566, 1995.

Singletary, K., MacDonald, C., Wallig, M., and Fisher, C., Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumorigenesis and DMBA-DNA adduct formation by curcumin, Cancer Lett., 103 (2), 137–141, 1996.

Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A., and McGuire, W.L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182., 1987.

Somasundaram, S., Edmund, N.A., Moore, D.T., Small, G.W., Shi, Y.Y., and Orlowski, R.Z. Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res., 62 (13), 3868–3875, 2002.

Sporn, M.B. The war on cancer. Lancet 347, 1377–1381, 1996.

Srimal, R.C. and Dhawan, B.N., Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent, J. Pharm. Pharmacol., 25 (6), 447–452, 1973.

Stetler-Stevenson, W.G. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J. Clin. Invest. 103, 1237–1241, 1999.

Thornberry, N.A., and Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316, 1998.

Van Der Logt, E.M., Roelofs, H.M., Nagengast, F.M., and Peters, W.H., Induction of rat hepatic and intestinal UDP-glucuronosyl transferases by naturally occurring dietary anticarcinogens, Carcinogenesis, 2003.

Varner, J.A., and Cheresh, D.A. Integrins and cancer. Curr. Opin. Cell Biol. 8, 724–730, 1996.

Vaux, D.L., Cory, S., and Adams, T.M. Bcl-2 promotes the survival of hematopoietic cells and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442, 1988.

Vaziri, H., and Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol., 8, 279–282, 1998.

Veikkola, T., and Alitalo, K. VEGFs, receptors and angiogenesis. Semin. Cancer Biol. 9, 211–220, 1999.

Volpert, O.V., Dameron, K.M., and Bouck, N. Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene 14, 1495–1502, 1997.

Wang, C.Y., Mayo, M.W., and Baldwin, Jr., A.S., TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB, Science, 274 (5288), 784–787, 1996.

Wang, Y.J., Pan, M.H., Cheng, A.L., Lin, L.I., Ho, Y.S., Hsieh, C.Y., and Lin, J.K., Stability of curcumin in buffer solutions and characterization of its degradation products, J. Pharm. Biomed. Anal., 15 (12), 1867–1876, 1997.

Whitelock, J.M., Murdoch, A.D., Iozzo, R.V., and Underwood, P.A. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J. Biol. Chem. 271, 10079–10086, 1996.

Wu, L.X., Xu, J.H.,Wu, G.H., and Chen, Y.Z. Inhibition effect of curcumin on proliferation of K562 cells involves down-regulation of p210(bcr/abl) intiated Ras signal trasduction pathway. Acta Pharmacol. Sin., 24 (11), 1155–1160, 2003.

Wyllie, A.H., Kerr, J.F., and Currie, A.R. Cell death: the significance of apoptosis. Int. Rev. Cytol., 68, 251–306, 1980.

Yarden, Y., and Ullrich, A. EGF and erbB2 receptor overexpression in human tumors. Growth factor recepor tyrosine kinases. Annu. Rev. Biochem. 57, 443–478, 1988.

Zhu, J., Wang, H., Bishop, J.M., and Blackburn, E.H. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc. Natl. Acad. Sci. USA 96, 3723–3728, 1999.

Zuo, L., Weger, J., Yang, Q., Goldstein, A.M., Tucker, M.A., Walker, G.J., Hayward, N., and Dracopoli, N.C. Germline mutations in the p16INK4A binding domain of CDK4 in familial melanoma. Nat. Genet. 12, 97–99, 1996.