Review On Versatile Drosophila Transgenic Models And Their Applications

Main Article Content

Rahul K R
Nagashree K S
Pruthvi R
Anjani Kumari
Chaithra S R

Abstract

Drosophila transgenic models are invaluable, particularly in the domains of genetics, molecular biology, and developmental biology. Researchers can learn a great deal about gene function, disease processes, and possible treatment approaches by inserting foreign DNA into the fruit fly's genome. The genetic manipulation where certain genes or mutations can be examined in detail, regulatory components may be uncovered, and the impact of genetic changes on different biological processes can be understood. These models go beyond basic genetic pathways to provide useful applications in the treatment of intricate problems as in neurodegenerative disorders, cancer biology, and organ regeneration. A revolutionary development in cancer research is the capacity to use Drosophila transgenic models to duplicate specific genetic changes linked to human tumors. This allows for the in-depth investigation of molecular pathways, the discovery of therapeutic targets, and the screening of anti-cancer drugs. The quick life cycle of Drosophila facilitates organ regeneration by enabling quick genetic screenings and insights into factors affecting organ development. Furthermore, these models are incredibly helpful in the investigation of neurodegenerative illnesses, offering vital information on the underlying mechanisms of conditions such as Parkinson's and Alzheimer's and supporting the development of treatment plans. The accuracy provided by Drosophila transgenic models addresses complex problems in a variety of biological domains and greatly useful in developmental biology and pharmacological screening

Downloads

Download data is not yet available.

Article Details

How to Cite
Rahul K R, Nagashree K S, Pruthvi R, Anjani Kumari, & Chaithra S R. (2024). Review On Versatile Drosophila Transgenic Models And Their Applications. Journal of Advanced Zoology, 45(2), 593–603. https://doi.org/10.53555/jaz.v45i2.3944
Section
Articles
Author Biographies

Rahul K R

Department of Pharmacology, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India

Nagashree K S

Department of Pharmacology JSS College of Pharmacy, Mysuru

JSS Academy of Higher Education & Research Mysuru, Karnataka, India

Telephone: + 91 7204282289

Pruthvi R

Department of Pharmacology, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India

Anjani Kumari

Department of Pharmacology, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India

Chaithra S R

Department of Pharmacology, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India

References

Ambegaokar, S.S. and Jackson, G.R. (2011) ‘Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation’, Human Molecular Genetics, 20(24), pp. 4947–4977. Available at: https://doi.org/10.1093/hmg/ddr432.

Bayliak, M.M. et al. (2019) ‘Interplay between diet-induced obesity and oxidative stress: Comparison between Drosophila and mammals’, Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 228, pp. 18–28. Available at: https://doi.org/10.1016/j.cbpa.2018.09.027.

Beaucher, M. et al. (2007) ‘Metastatic ability of Drosophila tumors depends on MMP activity’, Developmental Biology, 303(2), pp. 625–634. Available at: https://doi.org/10.1016/j.ydbio.2006.12.001.

Beira, J.V. and Paro, R. (2016) ‘The legacy of Drosophila imaginal discs’, Chromosoma, 125(4), pp. 573–592. Available at: https://doi.org/10.1007/s00412-016-0595-4.

Bergantiños, C., Corominas, M. and Serras, F. (2010) ‘Cell death-induced regeneration in wing imaginal discs requires JNK signalling’, Development (Cambridge, England), 137(7), pp. 1169–1179. Available at: https://doi.org/10.1242/dev.045559.

Bolus, H. et al. (2020) ‘Modeling Neurodegenerative Disorders in Drosophila melanogaster’, International Journal of Molecular Sciences, 21(9), p. 3055. Available at: https://doi.org/10.3390/ijms21093055.

Bonini, N.M. and Fortini, M.E. (2003a) ‘H UMAN N EURODEGENERATIVE D ISEASE M ODELING U SING D ROSOPHILA ’, Annual Review of Neuroscience, 26(1), pp. 627–656. Available at: https://doi.org/10.1146/annurev.neuro.26.041002.131425.

Bonini, N.M. and Fortini, M.E. (2003b) ‘Human Neurodegenerative Disease Modeling Using Drosophila’, Annual Review of Neuroscience, 26(1), pp. 627–656. Available at: https://doi.org/10.1146/annurev.neuro.26.041002.131425.

Burdick, D. et al. (1992) ‘Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs’, The Journal of Biological Chemistry, 267(1), pp. 546–554.

Cheng, L., Baonza, A. and Grifoni, D. (2018) ‘Drosophila Models of Human Disease’, BioMed Research International, 2018, p. 7214974. Available at: https://doi.org/10.1155/2018/7214974.

Cookson, M.R. (2010) ‘The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease’, Nature reviews. Neuroscience, 11(12), pp. 791–797. Available at: https://doi.org/10.1038/nrn2935.

Crowther, D.C. et al. (2005) ‘Intraneuronal Aβ, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease’, Neuroscience, 132(1), pp. 123–135. Available at: https://doi.org/10.1016/j.neuroscience.2004.12.025.

Dietary cysteine drives body fat loss via FMRFamide signaling in Drosophila and mouse - PubMed (no date). Available at: https://pubmed.ncbi.nlm.nih.gov/37055592/ (Accessed: 28 November 2023).

Dillard, C., Reis, J.G.T. and Rusten, T.E. (2021) ‘RasV12; scrib−/− Tumors: A Cooperative Oncogenesis Model Fueled by Tumor/Host Interactions’, International Journal of Molecular Sciences, 22(16), p. 8873. Available at: https://doi.org/10.3390/ijms22168873.

Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila: A potential model for Alzheimer’s disease - PMC (no date). Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC404095/ (Accessed: 28 November 2023).

Fergestad, T., Bostwick, B. and Ganetzky, B. (2006) ‘Metabolic Disruption in Drosophila Bang-Sensitive Seizure Mutants’, Genetics, 173(3), p. 1357. Available at: https://doi.org/10.1534/genetics.106.057463.

Fernandes, C. and Rao, Y. (2011) ‘Genome-wide screen for modifiers of Parkinson’s disease genes in Drosophila’, Molecular Brain, 4(1), p. 17. Available at: https://doi.org/10.1186/1756-6606-4-17.

Ferri, C.P. et al. (2005) ‘Global prevalence of dementia: a Delphi consensus study’, Lancet (London, England), 366(9503), pp. 2112–2117. Available at: https://doi.org/10.1016/S0140-6736(05)67889-0.

Finelli, A. et al. (2004) ‘A model for studying Alzheimer’s Abeta42-induced toxicity in Drosophila melanogaster’, Molecular and Cellular Neurosciences, 26(3), pp. 365–375. Available at: https://doi.org/10.1016/j.mcn.2004.03.001.

Fox, D.T., Cohen, E. and Smith-Bolton, R. (2020) ‘Model systems for regeneration: Drosophila’, Development (Cambridge, England), 147(7), p. dev173781. Available at: https://doi.org/10.1242/dev.173781.

Froldi, F. et al. (2008) ‘Drosophila Lethal Giant Larvae Neoplastic Mutant as a Genetic Tool for Cancer Modeling’, Current Genomics, 9(3), pp. 147–154. Available at: https://doi.org/10.2174/138920208784340786.

Giesecke, A. et al. (2023) ‘A novel period mutation implicating nuclear export in temperature compensation of the Drosophila circadian clock’, Current Biology, 33(2), pp. 336-350.e5. Available at: https://doi.org/10.1016/j.cub.2022.12.011.

Golic, K.G. (1991) ‘Site-specific recombination between homologous chromosomes in Drosophila’, Science (New York, N.Y.), 252(5008), pp. 958–961. Available at: https://doi.org/10.1126/science.2035025.

Grenier, T. and Leulier, F. (2020) ‘How commensal microbes shape the physiology of Drosophila melanogaster’, Current Opinion in Insect Science, 41, pp. 92–99. Available at: https://doi.org/10.1016/j.cois.2020.08.002.

How close are you to a fruit fly? (2015) University of Cambridge. Available at: https://www.cam.ac.uk/research/features/how-close-are-you-to-a-fruit-fly (Accessed: 28 November 2023).

Hua, H. et al. (2011) ‘Toxicity of Alzheimer’s disease-associated Aβ peptide is ameliorated in a Drosophila model by tight control of zinc and copper availability’, Biological Chemistry, 392(10), pp. 919–926. Available at: https://doi.org/10.1515/BC.2011.084.

Jackson, G.R. et al. (2002) ‘Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila’, Neuron, 34(4), pp. 509–519. Available at: https://doi.org/10.1016/s0896-6273(02)00706-7.

Jin, Y. et al. (2017) ‘Intestinal Stem Cell Pool Regulation in Drosophila’, Stem Cell Reports, 8(6), pp. 1479–1487. Available at: https://doi.org/10.1016/j.stemcr.2017.04.002.

Khan, S.J. et al. (2017) ‘The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling’, PLoS genetics, 13(7), p. e1006937. Available at: https://doi.org/10.1371/journal.pgen.1006937.

Khan, S.J., Schuster, K.J. and Smith-Bolton, R.K. (2016) ‘Regeneration in Crustaceans and Insects’, in Encyclopedia of Life Sciences. John Wiley & Sons, Ltd, pp. 1–14. Available at: https://doi.org/10.1002/9780470015902.a0001098.pub2.

Kim, S.K. et al. (2021) ‘Discovering signaling mechanisms governing metabolism and metabolic diseases with Drosophila’, Cell Metabolism, 33(7), pp. 1279–1292. Available at: https://doi.org/10.1016/j.cmet.2021.05.018.

Lees, A.J., Hardy, J. and Revesz, T. (2009) ‘Parkinson’s disease’, Lancet (London, England), 373(9680), pp. 2055–2066. Available at: https://doi.org/10.1016/S0140-6736(09)60492-X.

Lenz, S. et al. (2013) ‘Drosophila as a screening tool to study human neurodegenerative diseases’, Journal of Neurochemistry, 127(4), pp. 453–460. Available at: https://doi.org/10.1111/jnc.12446.

Lu, B. (2009) ‘Recent advances in using Drosophila to model neurodegenerative diseases’, Apoptosis: An International Journal on Programmed Cell Death, 14(8), pp. 1008–1020. Available at: https://doi.org/10.1007/s10495-009-0347-5.

Lu, B. and Vogel, H. (2009) ‘Drosophila Models of Neurodegenerative Diseases’, Annual review of pathology, 4, pp. 315–342. Available at: https://doi.org/10.1146/annurev.pathol.3.121806.151529.

Mattila, J. and Hietakangas, V. (2017) ‘Regulation of Carbohydrate Energy Metabolism in Drosophila melanogaster’, Genetics, 207(4), pp. 1231–1253. Available at: https://doi.org/10.1534/genetics.117.199885.

Mirzoyan, Z. et al. (2019) ‘Drosophila melanogaster: A Model Organism to Study Cancer’, Frontiers in Genetics, 10, p. 51. Available at: https://doi.org/10.3389/fgene.2019.00051.

Musselman, L.P. and Kühnlein, R.P. (2018) ‘Drosophila as a model to study obesity and metabolic disease’, The Journal of Experimental Biology, 221(Pt Suppl 1), p. jeb163881. Available at: https://doi.org/10.1242/jeb.163881.

Mutation in the tau gene in familial multiple system tauopathy with presenile dementia - PMC (no date). Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC22742/ (Accessed: 28 November 2023).

Paisán-Ruíz, C. et al. (2004) ‘Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease’, Neuron, 44(4), pp. 595–600. Available at: https://doi.org/10.1016/j.neuron.2004.10.023.

Prüßing, K., Voigt, A. and Schulz, J.B. (2013) ‘Drosophila melanogaster as a model organism for Alzheimer’s disease’, Molecular Neurodegeneration, 8, p. 35. Available at: https://doi.org/10.1186/1750-1326-8-35.

Razzell, W., Wood, W. and Martin, P. (2011) ‘Swatting flies: modelling wound healing and inflammation in Drosophila’, Disease Models & Mechanisms, 4(5), pp. 569–574. Available at: https://doi.org/10.1242/dmm.006825.

Repiso, A., Bergantiños, C. and Serras, F. (2013) ‘Cell fate respecification and cell division orientation drive intercalary regeneration in Drosophila wing discs’, Development (Cambridge, England), 140(17), pp. 3541–3551. Available at: https://doi.org/10.1242/dev.095760.

Ringrose, L. (2009) ‘Transgenesis in Drosophila melanogaster’, Methods in Molecular Biology (Clifton, N.J.), 561, pp. 3–19. Available at: https://doi.org/10.1007/978-1-60327-019-9_1.

Roberson, E.D. et al. (2007) ‘Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model’, Science (New York, N.Y.), 316(5825), pp. 750–754. Available at: https://doi.org/10.1126/science.1141736.

Robinson, S.W. et al. (2013) ‘FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster’, Nucleic Acids Research, 41(Database issue), pp. D744-750. Available at: https://doi.org/10.1093/nar/gks1141.

Rozich, E., Randolph, L.K. and Insolera, R. (2023) ‘An optimized temporally controlled Gal4 system in Drosophila reveals degeneration caused by adult-onset neuronal Vps13D knockdown’, Frontiers in Neuroscience, 17, p. 1204068. Available at: https://doi.org/10.3389/fnins.2023.1204068.

Santabárbara-Ruiz, P. et al. (2015) ‘ROS-Induced JNK and p38 Signaling Is Required for Unpaired Cytokine Activation during Drosophila Regeneration’, PLoS Genetics, 11(10), p. e1005595. Available at: https://doi.org/10.1371/journal.pgen.1005595.

Santabárbara-Ruiz, P. et al. (2019) ‘Ask1 and Akt act synergistically to promote ROS-dependent regeneration in Drosophila’, PLoS genetics, 15(1), p. e1007926. Available at: https://doi.org/10.1371/journal.pgen.1007926.

Sawyer, J.K., Cohen, E. and Fox, D.T. (2017) ‘Interorgan regulation of Drosophila intestinal stem cell proliferation by a hybrid organ boundary zone’, Development (Cambridge, England), 144(22), pp. 4091–4102. Available at: https://doi.org/10.1242/dev.153114.

Sonoshita, M. and Cagan, R.L. (2017) ‘Modeling Human Cancers in Drosophila’, in Current Topics in Developmental Biology. Elsevier, pp. 287–309. Available at: https://doi.org/10.1016/bs.ctdb.2016.07.008.

Strand, D. et al. (1995) ‘A human homologue of the Drosophila tumour suppressor gene l(2)gl maps to 17p11.2-12 and codes for a cytoskeletal protein that associates with nonmuscle myosin II heavy chain’, Oncogene, 11(2), pp. 291–301.

Sun, X. et al. (2016) ‘Melatonin attenuates hLRRK2-induced sleep disturbances and synaptic dysfunction in a Drosophila model of Parkinson’s disease’, Molecular Medicine Reports, 13(5), pp. 3936–3944. Available at: https://doi.org/10.3892/mmr.2016.4991.

Transgenic Drosophila - an overview | ScienceDirect Topics (no date). Available at: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/transgenic-drosophila (Accessed: 28 November 2023).

Trithorax regulates systemic signaling during Drosophila imaginal disc regeneration - PubMed (no date). Available at: https://pubmed.ncbi.nlm.nih.gov/26487779/ (Accessed: 28 November 2023).

Tsai, C.-R., Wang, Y. and Galko, M.J. (2018) ‘Crawling wounded: molecular genetic insights into wound healing from Drosophila larvae’, The International Journal of Developmental Biology, 62(6-7–8), pp. 479–489. Available at: https://doi.org/10.1387/ijdb.180085mg.

Vatashchuk, M.V. et al. (2022) ‘Metabolic Syndrome: Lessons from Rodent and Drosophila Models’, BioMed Research International, 2022, p. 5850507. Available at: https://doi.org/10.1155/2022/5850507.

Wang, L. et al. (2012) ‘Epidermal growth factor receptor is a preferred target for treating amyloid-β-induced memory loss’, Proceedings of the National Academy of Sciences of the United States of America, 109(41), pp. 16743–16748. Available at: https://doi.org/10.1073/pnas.1208011109.

Xiong, Y. and Yu, J. (2018) ‘Modeling Parkinson’s Disease in Drosophila: What Have We Learned for Dominant Traits?’, Frontiers in Neurology, 9, p. 228. Available at: https://doi.org/10.3389/fneur.2018.00228.

Yamamura, R., Ooshio, T. and Sonoshita, M. (2021) ‘Tiny Drosophila makes giant strides in cancer research’, Cancer Science, 112(2), pp. 505–514. Available at: https://doi.org/10.1111/cas.14747.

Zandawala, M. et al. (2018) ‘Modulation of Drosophila post-feeding physiology and behavior by the neuropeptide leucokinin’, PLoS genetics, 14(11), p. e1007767. Available at: https://doi.org/10.1371/journal.pgen.1007767.