Innovative eDNA Approaches For Fish Biomass Estimation In Aquatic Environments

Main Article Content

Debabrata Senapati
Biplab Mandal
Shampa Patra
Bidhan Chandra Patra

Abstract

We conducted research utilizing environmental DNA (eDNA) derived from aquatic vertebrates to assess species presence, with a specific focus on estimating biomass. Our hypothesis posited that fish release DNA into the water proportionate to their biomass, enabling the use of eDNA concentration to estimate species biomass. A novel eDNA method was developed for estimating the Rohu fish, Labeo rohita (Hamilton, 1822) biomass through both laboratory and field experimentation. In aquarium settings, we observed a dynamic change in eDNA concentration initially, stabilizing after 6 days. Notably, temperature exhibited no significant impact on eDNA concentrations in aquarium environments. Positive correlations between fish biomass and eDNA concentration were identified in both aquarium and experimental pond settings. Subsequently, we applied this eDNA method to estimate Rohu fish biomass and distribution in a natural freshwater ecosystem. Our findings indicated modifying the distribution of fish eDNA concentration could be revealed by water temperature. Consequently, we propose that biomass data derived after eDNA concentration serves as a reliable indicator of the likely distribution of carp in natural environments. The measurement of eDNA concentration offers a non-invasive, straightforward, and rapid approach to biomass estimation. This method holds promise for informing management plans geared toward ecosystem conservation.

Downloads

Download data is not yet available.

Article Details

How to Cite
Debabrata Senapati, Biplab Mandal, Shampa Patra, & Bidhan Chandra Patra. (2024). Innovative eDNA Approaches For Fish Biomass Estimation In Aquatic Environments. Journal of Advanced Zoology, 45(S2), 107–115. Retrieved from http://jazindia.com/index.php/jaz/article/view/3846
Section
Articles
Author Biographies

Debabrata Senapati

Department of Zoology, Vidyasagar University, Midnapore- 721102, West Bengal, India.

Biplab Mandal

Department of Zoology, Vidyasagar University, Midnapore- 721102, West Bengal, India.

Shampa Patra

Sabang Sajani Kanta Mahavidyalaya, Paschim Medinipur-721166, West Bengal, India.

Bidhan Chandra Patra

Department of Zoology, Vidyasagar University, Midnapore- 721102, West Bengal, India.

References

Akaike, H. (1998). Information Theory and an Extension of Information the Maximum Theory Likelihood and an Principle Extension of the Maximum Likelihood Principle. Biogeochemistry, 1998. https://doi.org/10.1007/978-1-4612-1694-0_15

Akaike, H. (2015). Information Theory and an Extension of the Maximum Likelihood Principle. In Trees - Structure and Function (Vol. 29, Issue 6). https://doi.org/10.1007/978-1-4612-0919-5_38

Aldeguer-Riquelme, B., Ramos-Barbero, M. D., Santos, F., & Antón, J. (2021). Environmental dissolved DNA harbours meaningful biological information on microbial community structure. Environmental Microbiology, 23(5). https://doi.org/10.1111/1462-2920.15510

Ali, S., & Kaviraj, A. (2018). Aquatic weed Ipomoea aquatica as feed ingredient for rearing Rohu, Labeo rohita (Hamilton). Egyptian Journal of Aquatic Research, 44(4). https://doi.org/10.1016/j.ejar.2018.09.004

Andruszkiewicz, E. A., Starks, H. A., Chavez, F. P., Sassoubre, L. M., Block, B. A., & Boehm, A. B. (2017). Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS ONE, 12(4). https://doi.org/10.1371/journal.pone.0176343

Banerjee, P., Dey, G., Antognazza, C. M., Sharma, R. K., Maity, J. P., Chan, M. W. Y., Huang, Y. H., Lin, P. Y., Chao, H. C., Lu, C. M., & Chen, C. Y. (2021). Reinforcement of environmental dna based methods (Sensu stricto) in biodiversity monitoring and conservation: A review. In Biology (Vol. 10, Issue 12). https://doi.org/10.3390/biology10121223

Barnes, M. A., & Turner, C. R. (2016). The ecology of environmental DNA and implications for conservation genetics. In Conservation Genetics (Vol. 17, Issue 1). https://doi.org/10.1007/s10592-015-0775-4

Chapman, D. C., Benson, A. J., Embke, H. S., King, N. R., Kočovský, P. M., Lewis, T. D., & Mandrak, N. E. (2021). Status of the major aquaculture carps of China in the Laurentian Great Lakes Basin. In Journal of Great Lakes Research (Vol. 47, Issue 1). https://doi.org/10.1016/j.jglr.2020.07.018

de Sousa, L. L., Silva, S. M., & Xavier, R. (2019). DNA metabarcoding in diet studies: Unveiling ecological aspects in aquatic and terrestrial ecosystems. In Environmental DNA (Vol. 1, Issue 3). https://doi.org/10.1002/edn3.27

Everts, T., Van Driessche, C., Neyrinck, S., De Regge, N., Descamps, S., De Vocht, A., Jacquemyn, H., & Brys, R. (2022). Using quantitative eDNA analyses to accurately estimate American bullfrog abundance and to evaluate management efficacy. Environmental DNA, 4(5). https://doi.org/10.1002/edn3.301

Ghori, I., Tubassam, M., Ahmad, T., Zuberi, A., & Imran, M. (2022). Gut microbiome modulation mediated by probiotics: Positive impact on growth and health status of Labeo rohita. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.949559

Ito, T., Kurita, J., & Yuasa, K. (2014). Differences in the susceptibility of Japanese indigenous and domesticated Eurasian common carp (Cyprinus carpio), identified by mitochondrial DNA typing, to cyprinid herpesvirus 3 (CyHV-3). Veterinary Microbiology, 171(1–2). https://doi.org/10.1016/j. vetmic.2014.03.002

MILLER, S. A., & CROWL, T. A. (2006). Effects of common carp (Cyprinus carpio) on macrophytes and invertebrate communities in a shallow lake. Freshwater Biology, 51(1). https://doi.org/10.1111/j.1365-2427.2005.01477.x

Minamoto, T., Honjo, M. N., Yamanaka, H., Uchii, K., & Kawabata, Z. (2012). Nationwide Cyprinid herpesvirus 3 contamination in natural rivers of Japan. Research in Veterinary Science, 93(1). https://doi.org/10.1016/j.rvsc.2011.06.004

Olden, J. D., Kennard, M. J., Leprieur, F., Tedesco, P. A., Winemiller, K. O., & García-Berthou, E. (2010). Conservation biogeography of freshwater fishes: Recent progress and future challenges. Diversity and Distributions, 16(3). https://doi.org/10.1111/j.1472-4642.2010.00655.x

Pollock, L. J., O’Connor, L. M. J., Mokany, K., Rosauer, D. F., Talluto, M. V., & Thuiller, W. (2020). Protecting Biodiversity (in All Its Complexity): New Models and Methods. In Trends in Ecology and Evolution (Vol. 35, Issue 12). https://doi.org/10.1016/j.tree.2020.08.015

Rahman, M. M. (2015). Effects of co-cultured common carp on nutrients and food web dynamics in rohu aquaculture ponds. Aquaculture Environment Interactions, 6(3). https://doi.org/10.3354/aei00127

Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M., & Gough, K. C. (2014). The detection of aquatic animal species using environmental DNA - a review of eDNA as a survey tool in ecology. In Journal of Applied Ecology (Vol. 51, Issue 5). https://doi.org/10.1111/1365-2664.12306

Rourke, M. L., Fowler, A. M., Hughes, J. M., Broadhurst, M. K., DiBattista, J. D., Fielder, S., Wilkes Walburn, J., & Furlan, E. M. (2022). Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys. Environmental DNA, 4(1). https://doi.org/10.1002/edn3.185

Schneider, J., Valentini, A., Dejean, T., Montarsi, F., Taberlet, P., Glaizot, O., & Fumagalli, L. (2016). Detection of invasive mosquito vectors using environmental DNA (eDNA) from water samples. PLoS ONE, 11(9). https://doi.org/10.1371/journal.pone.0162493

Senapati, D., Bhattacharya, M., Kar, A., Chini, D. S., Das, B. K., & Patra, B. C. (2019). Environmental DNA (eDNA): A Promising Biological Survey Tool for Aquatic Species Detection. Proceedings of the Zoological Society, 72(3). https://doi.org/10.1007/s12595-018-0268-9

Sigsgaard, E. E., Torquato, F., Frøslev, T. G., Moore, A. B. M., Sørensen, J. M., Range, P., Ben-Hamadou, R., Bach, S. S., Møller, P. R., & Thomsen, P. F. (2020). Using vertebrate environmental DNA from seawater in biomonitoring of marine habitats. Conservation Biology, 34(3). https://doi.org/10.1111/cobi.13437

Stewart, K. A. (2019). Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. In Biodiversity and Conservation (Vol. 28, Issue 5). https://doi.org/10.1007/s10531-019-01709-8

Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata, Z. (2012). Estimation of fish biomass using environmental DNA. PLoS ONE, 7(4). https://doi.org/10.1371/journal.pone.0035868

Team, R. C. (2021). R: A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing.

Venables, W. N., & Ripley, B. D. (2002). Statistics Complements to Modern Applied Statistics with S. In Modern Applied Statistics with S.

Walker, D. M., Leys, J. E., Dunham, K. E., Oliver, J. C., Schiller, E. E., Stephenson, K. S., Kimrey, J. T., Wooten, J., & Rogers, M. W. (2017). Methodological considerations for detection of terrestrial small-body salamander eDNA and implications for biodiversity conservation. Molecular Ecology Resources, 17(6). https://doi.org/10.1111/1755-0998.12667