Performance Evaluation Of Optimizers On Fine-Tuned VGG-19 Model For Thyroid Nodules Classification

Main Article Content

Shiwangi kulhari
Dr. Ritu vijay

Abstract

The task of thyroid nodules classification involves the intricate analysis of patterns and features present in ultrasound images. Convolutional Neural Networks (CNNs) are being harnessed for thyroid malignancy detection due to their exceptional capability to process complex and high-dimensional medical imaging data effectively. This study introduces a meticulously fine-tuned VGG-19 CNN model, designed to cater specifically to the multi-classification of thyroid nodules within pre-processed ultrasound (US) images. Additionally, the model's efficacy is evaluated across a spectrum of optimization techniques. Experimental results underscore the model's effectiveness, showcasing accuracy rates of 0.6562, 0.8094, 0.8294, and 0.9201 when employing SGD, ADAgrad, RMSprop, and ADAM optimizers, respectively, spanning 150 epochs. Importantly, the ADAM optimizer emerges as the key contributor to the optimal testing loss, signifying its crucial role in refining the model's performance.

Downloads

Download data is not yet available.

Article Details

How to Cite
Shiwangi kulhari, & Dr. Ritu vijay. (2024). Performance Evaluation Of Optimizers On Fine-Tuned VGG-19 Model For Thyroid Nodules Classification. Journal of Advanced Zoology, 45(S2), 29–37. https://doi.org/10.53555/jaz.v45iS2.3740
Section
Articles
Author Biographies

Shiwangi kulhari

School of physical sciences Banasthali vidyapith Tonk, India

Dr. Ritu vijay

School of physical sciences Banasthali vidyapith Tonk, India

References

Nguyen, Q. T., Lee, E. J., Huang, M. G., Park, Y. I., Khullar, A., & Plodkowski, R. A. (2015). Diagnosis and treatment of patients with thyroid cancer. American health & drug benefits, 8(1), 30–40.

Cancer of the Thyroid - Cancer Stat Facts. (n.d.). SEER. https://seer.cancer.gov/statfacts/html/thyro.html

Thyroid cancer - Symptoms and causes. (2023, April 26). Mayo Clinic.

https://www.mayoclinic.org/diseases-conditions/thyroid-cancer/symptoms-causes/syc-20354161

Kitahara, C. M., Kӧrmendiné Farkas, D., Jørgensen, J. O. L., Cronin-Fenton, D., & Sørensen, H. T. (2018, March 23). Benign Thyroid Diseases and Risk of Thyroid Cancer: A Nationwide Cohort Study. The Journal of Clinical Endocrinology & Metabolism, 103(6), 2216–2224.

https://doi.org/10.1210/jc.2017-02599

Anari, S., Tataei Sarshar, N., Mahjoori, N., Dorosti, S., & Rezaie, A. (2022, August 25). Review of Deep Learning Approaches for Thyroid Cancer Diagnosis. Mathematical Problems in Engineering, 2022, 1–8. https://doi.org/10.1155/2022/5052435

Zhang, X., Lee, V. C. S., Rong, J., Liu, F., & Kong, H. (2022). Multi-channel convolutional neural network architectures for thyroid cancer detection. PloS one, 17(1), e0262128.

https://doi.org/10.1371/journal.pone.0262128

Zhang, Q., Zhang, M., Chen, T., Sun, Z., Ma, Y., & Yu, B. (2019, January). Recent advances in convolutional neural network acceleration. Neurocomputing, 323, 37–51.

https://doi.org/10.1016/j.neucom.2018.09.038

Dogo, E. M., Afolabi, O. J., & Twala, B. (2022, November 23). On the Relative Impact of Optimizers on Convolutional Neural Networks with Varying Depth and Width for Image Classification. Applied Sciences, 12(23), 11976. https://doi.org/10.3390/app122311976

Liang, X., Yu, J., Liao, J., & Chen, Z. (2020, January 10). Convolutional Neural Network for Breast and Thyroid Nodules Diagnosis in Ultrasound Imaging. BioMed Research International, 2020, 1–9. https://doi.org/10.1155/2020/1763803

Wang, Y., Yue, W., Li, X., Liu, S., Guo, L., Xu, H., Zhang, H., & Yang, G. (2020). Comparison Study of Radiomics and Deep Learning-Based Methods for Thyroid Nodules Classification Using Ultrasound Images. IEEE Access, 8, 52010–52017. https://doi.org/10.1109/access.2020.2980290

Xie, J., Guo, L., Zhao, C., Li, X., Luo, Y., & Jianwei, L. (2020, December 1). A Hybrid Deep Learning and Handcrafted Features based Approach for Thyroid Nodule Classification in Ultrasound Images. Journal of Physics: Conference Series, 1693(1), 012160. https://doi.org/10.1088/1742-6596/1693/1/012160

Liu, Z., Zhong, S., Liu, Q., Xie, C., Dai, Y., Peng, C., Chen, X., & Zou, R. (2021, January 6). Thyroid nodule recognition using a joint convolutional neural network with information fusion of ultrasound images and radiofrequency data. European Radiology, 31(7), 5001–5011. https://doi.org/10.1007/s00330-020-07585-z

Vadhiraj, V. V., Simpkin, A., O’Connell, J., Singh Ospina, N., Maraka, S., & O’Keeffe, D. T. (2021, May 24). Ultrasound Image Classification of Thyroid Nodules Using Machine Learning Techniques. Medicina, 57(6), 527. https://doi.org/10.3390/medicina57060527

Li, W., Cheng, S., Qian, K., Yue, K., & Liu, H. (2021, May 27). Automatic Recognition and Classification System of Thyroid Nodules in CT Images Based on CNN . Computational Intelligence and Neuroscience, 2021, 1–11. https://doi.org/10.1155/2021/5540186

Hang, Y. (2021, July 22). Thyroid Nodule Classification in Ultrasound Images by Fusion of Conventional Features and Res-GAN Deep Features. Journal of Healthcare Engineering, 2021, 1–7. https://doi.org/10.1155/2021/9917538

Peng, S., Liu, Y., Lv, W., Liu, L., Zhou, Q., Yang, H., Ren, J., Liu, G., Wang, X., Zhang, X., Du, Q., Nie, F., Huang, G., Guo, Y., Li, J., Liang, J., Hu, H., Xiao, H., Liu, Z., . . . Xiao, H. (2021, April). Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study. The Lancet Digital Health, 3(4), e250–e259. https://doi.org/10.1016/s2589-7500(21)00041-8

Qi, Q., Huang, X., Zhang, Y., Cai, S., Liu, Z., Qiu, T., Cui, Z., Zhou, A., Yuan, X., Zhu, W., Min, X., Wu, Y., Wang, W., Zhang, C., & Xu, P. (2023, April). Ultrasound image-based deep learning to assist in diagnosing gross extrathyroidal extension thyroid cancer: a retrospective multicenter study. EClinicalMedicine, 60, 102007. https://doi.org/10.1016/j.eclinm.2023.102007

Liu, Y., Lai, F., Lin, B., Gu, Y., Chen, L., Chen, G., Xiao, H., Luo, S., Pang, Y., Xiong, D., Li, B., Peng, S., Lv, W., Alexander, E. K., & Xiao, H. (2023, June). Deep learning to predict cervical lymph node metastasis from intraoperative frozen section of tumour in papillary thyroid carcinoma: a multicentre diagnostic study. E Clinical Medicine, 60, 102007. https://doi.org/10.1016/j.eclinm.2023.102007

Ajilisa, O. A., Jagathy Raj, V. P., & Sabu, M. K. (2023, July 24). A Deep Learning Framework for the Characterization of Thyroid Nodules from Ultrasound Images Using Improved Inception Network and Multi-Level Transfer Learning. Diagnostics, 13(14), 2463. https://doi.org/10.3390/diagnostics13142463

Yang, Z., Yu, Y., You, C., Steinhardt, J., & Ma, Y. (2020, February 26). Rethinking Bias-Variance Trade-off for Generalization of Neural Networks. arXiv.org. https://arxiv.org/abs/2002.11328v3

Keskar, N. S., & Socher, R. (2017, December 20). Improving Generalization Performance by Switching from Adam to SGD. arXiv.org. https://arxiv.org/abs/1712.07628v1

Choi, D., Shallue, C. J., Nado, Z., Lee, J., Maddison, C. J., & Dahl, G. E. (2019, October 11). On Empirical Comparisons of Optimizers for Deep Learning. arXiv.org. https://arxiv.org/abs/1910.05446v3

Nado, Z., Gilmer, J. M., Shallue, C. J., Anil, R., & Dahl, G. E. (2021, February 12). A Large Batch Optimizer Reality Check: Traditional, Generic Optimizers Suffice Across Batch Sizes. arXiv.org. https://arxiv.org/abs/2102.06356v3

Pedraza, L., Vargas, C., Narváez, F., Durán, O., Muñoz, E., & Romero, E. (2015, January 28). An open access thyroid ultrasound image database. SPIE Proceedings. https://doi.org/10.1117/12.2073532

Song, R., Zhang, L., Zhu, C., Liu, J., Yang, J., & Zhang, T. (2020). Thyroid Nodule Ultrasound Image Classification Through Hybrid Feature Cropping Network. IEEE Access, 8, 64064–64074. https://doi.org/10.1109/access.2020.2982767

Simonyan, K., & Zisserman, A. (2014, September 4). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv.org. https://arxiv.org/abs/1409.1556v6

Bansal, M., Kumar, M., Sachdeva, M., & Mittal, A. (2021, September 17). Transfer learning for image classification using VGG19: Caltech-101 image data set. Journal of Ambient Intelligence and Humanized Computing, 14(4), 3609–3620. https://doi.org/10.1007/s12652-021-03488-z

Ruder, S. (2016, September 15). An overview of gradient descent optimization algorithms. arXiv.org. https://arxiv.org/abs/1609.04747v2

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 12(7).

Dogo, E. M., Afolabi, O. J., & Twala, B. (2022, November 23). On the Relative Impact of Optimizers on Convolutional Neural Networks with Varying Depth and Width for Image Classification. Applied Sciences, 12(23), 11976. https://doi.org/10.3390/app122311976

Kingma, D. P., & Ba, J. (2014, December 22). Adam: A Method for Stochastic Optimization. arXiv.org. https://arxiv.org/abs/1412.6980v9