Assessment Of In-Vivo Anti-Fibrotic Potential Of Fruit Seed Extract Of Indian Jujube (Ziziphus Mauritiana) Using 2-Nitropropane Induced Hepatic Fibrosis Model.

Authors

  • Praveen Kumar
  • Dr. Dinesh Kumar Sharma
  • Dr. Nasiruddin Ahmad Farooqui

DOI:

https://doi.org/10.53555/jaz.v45iS1.3693

Keywords:

2-nitropropane (2-NP), Liver fibrosis, Ziziphus mauritiana, Antioxidant, Pro-inflammatory mediators, Anti-inflammatory

Abstract

Injury to the liver is a significant public health issue that affects people all over the world, which necessitates the creation of innovative treatments that are both effective and safe. Due to the antioxidant activity that it possesses, Ziziphus mauritiana (Z. mauritiana) has traditionally been considered to have therapeutic potential against many organ toxicity disorders. In the current work, the objective was to assess the antioxidant activities in vitro and the potential hepatoprotective effects of hydroethanolic extracts from Z. mauritiana seeds (ZMSE) against 2-nitropropane (2-NP) produced liver damage (Fibrosis) in rats. Additionally, the phytochemical contents of the extracts were to be identified. Through in vitro testing, the extract demonstrated significant antioxidant properties, as well as a high quantity of flavonoids and other phenolic compounds respectively. By activating the hepatic antioxidant defense mechanisms, modulating hepatic functions, and decreasing the production of lipid peroxidation, pro-inflammatory mediators, and collagen content, oral administration of ZMSE (especially high dose) significantly suppressed the incidence and severity of 2-NP-induced liver toxicity. However, the degree of suppression varied depending on the dose. There is a possibility that the presence of phenolic acids, flavonoids, and diterpenoids is responsible for these activities. These findings demonstrate the antioxidant and anti-inflammatory properties of ZMSE when administered in varying doses (200, 400, or 800 mg/kg body weight), demonstrate the protective and beneficial effects of the seed against 2-NP-induced hepatic toxicity in rats, and provide support for its consumption, traditional uses, and the promotion of its valorization as a nutraceutical product.

 

Downloads

Download data is not yet available.

Author Biographies

Praveen Kumar

Research scholar, Sanskriti university, Mathura, U.P

Dr. Dinesh Kumar Sharma

Dean and professor, Sanskriti university, Mathura, U.P

Dr. Nasiruddin Ahmad Farooqui

Professor, Translam Institute of Pharmaceutical Education and Research, Meerut, U.P

References

Al-Afifi, N. A., Alabsi, A. M., Bakri, M. M., & Ramanathan, A. (2018). Acute and sub-acute oral toxicity of Dracaena cinnabari resin methanol extract in rats. BMC Complementary and Alternative Medicine, 18(1), 1–14. https://doi.org/10.1186/s12906-018-2110-3

Alsayari, A., & Wahab, S. (2021). Genus Ziziphus for the treatment of chronic inflammatory diseases. Saudi Journal of Biological Sciences, 28(12), 6897–6914. https://doi.org/10.1016/j.sjbs.2021.07.076

Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants, 8(4). https://doi.org/10.3390/PLANTS8040096

Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. M. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules, 27(4). https://doi.org/10.3390/ MOLECULES27041326

Bataller, R., & Brenner, D. A. (2005). Liver fibrosis. Journal of Clinical Investigation, 115(2), 209–218. https://doi.org/10.1172/JCI24282

Borges, L. P., Nogueira, C. W., Panatieri, R. B., Rocha, J. B. T., & Zeni, G. (2006). Acute liver damage induced by 2-NP in rats: effect of diphenyl diselenide on antioxidant defenses. Chemico-Biological Interactions, 160(2), 99–107. https://doi.org/10.1016/J.CBI.2005.12.010

Casas-Grajales, S. (2015). Antioxidants in liver health. World Journal of Gastrointestinal Pharmacology and Therapeutics, 6(3), 59. https://doi.org/10.4292/wjgpt.v6.i3.59

Corcoran, G. B., Chung, S. J., & Salazar, D. E. (1987). Early inhibition of the Na+/K+-ATPase ion pump during acetaminophen-induced hepatotoxicity in rat. Biochemical and Biophysical Research Communications, 149(1), 203–207. https://doi.org/10.1016/0006-291X(87)91624-X

Dhar, D., Baglieri, J., Kisseleva, T., & Brenner, D. A. (2020). Mechanisms of liver fibrosis and its role in liver cancer. Experimental Biology and Medicine, 245(2), 96–108. https://doi.org/10.1177/ 1535370219898141

Eugenia Letelier Muñoz, M., Jara, J., Iturra, P., & Faúndez, M. (2009). Evaluation of the antioxidant properties and effects on the biotransformation of commercial herbal preparations using rat liver endoplasmic reticulum Antioxicant capacity of natural products View project Heteroaryl-acrylonitrile derivatives as inhibitors of NADPH Oxidases in an isoform-specific manner. View project. http://redalyc.uaemex.mx/src/inicio/ArtPdfRed.jsp?iCve=85611769007

González-Palma, I., Escalona-Buendía, H. B., Ponce-Alquicira, E., Téllez-Téllez, M., Gupta, V. K., Díaz-Godínez, G., & Soriano-Santos, J. (2016). Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Frontiers in Microbiology, 7(JUL), 206086. https://doi.org/10.3389/FMICB.2016.01099/BIBTEX

Habig, W. H., Pabst, M. J., And, ~, & Jakoby, W. B. (1974). Glutathione S-Transferases THE FIRST ENZYMATIC STEP IN MERCAPTURIC ACID FORMATION*. Journal of Biological Chemistry, 249(22), 7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8

James, S. L., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N., Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, Z., Abera, S. F., Abil, O. Z., Abraha, H. N., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., Accrombessi, M. M. K., … Murray, C. J. L. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392(10159), 1789–1858. https://doi.org/10.1016/S0140-6736(18)32279-7

Koley, T. K., Kaur, C., Nagal, S., Walia, S., Jaggi, S., & Sarika. (2016). Antioxidant activity and phenolic content in genotypes of Indian jujube (Zizyphus mauritiana Lamk.). Arabian Journal of Chemistry, 9, S1044–S1052. https://doi.org/10.1016/J.ARABJC.2011.11.005

Mahboubi, M., Kazempour, N., & Nazar, A. R. B. (2013). Total Phenolic, Total Flavonoids, Antioxidant and Antimicrobial Activities of Scrophularia Striata Boiss Extracts. Jundishapur Journal of Natural Pharmaceutical Products, 8(1), 15. https://doi.org/10.5812/jjnpp.7621

MARKLUND, S., & MARKLUND, G. (1974). Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. European Journal of Biochemistry, 47(3), 469–474. https://doi.org/10.1111/J.1432-1033.1974.TB03714.X

Molole, G. J., Gure, A., & Abdissa, N. (2022). Determination of total phenolic content and antioxidant activity of Commiphora mollis (Oliv.) Engl. resin. BMC Chemistry, 16(1), 1–11. https://doi.org/ 10.1186/S13065-022-00841-X/TABLES/2

Moron, M. S., Depierre, J. W., & Mannervik, B. (1979). Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta (BBA) - General Subjects, 582(1), 67–78. https://doi.org/10.1016/0304-4165(79)90289-7

Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3

Ortiz, C., Schierwagen, R., Schaefer, L., Klein, S., Trepat, X., & Trebicka, J. (2021). Extracellular Matrix Remodeling in Chronic Liver Disease. Current Tissue Microenvironment Reports, 2(3), 41–52. https://doi.org/10.1007/s43152-021-00030-3

Owolarafe, T., Ihegboro, G., Salawu, K., Ononamadu, C., Fadilu, M., & Musa, B. (2022). Toxicological Investigation of Aqueous Extract of Ziziphus mauritiana Leaves on Wistar Rats. International Journal of Traditional and Complementary Medicine Research IJTCMR, 2, 91–100. https://doi.org/ 10.53811/ijtcmr.1056770

Pariyani, R., Safinar Ismail, I., Azam, A. A., Abas, F., Shaari, K., & Sulaiman, M. R. (2015). Phytochemical screening and acute oral toxicity study of Java tea leaf extracts. BioMed Research International, 2015. https://doi.org/10.1155/2015/742420

Qiu, B., Wei, F., Sun, X., Wang, X., Duan, B., Shi, C., Zhang, J., Zhang, J., Qiu, W., & Mu, W. (2014). Measurement of hydroxyproline in collagen with three different methods. Molecular Medicine Reports, 10(2), 1157–1163. https://doi.org/10.3892/MMR.2014.2267/HTML

Rajapaksha, I. (2022). Liver Fibrosis, Liver Cancer, and Advances in Therapeutic Approaches. Livers 2022, Vol. 2, Pages 372-386, 2(4), 372–386. https://doi.org/10.3390/LIVERS2040028

Rajopadhye, A., & Upadhye, A. S. (2016). Estimation of bioactive compound, maslinic acid by HPTLC, and evaluation of hepatoprotective activity on fruit pulp of Ziziphus jujuba Mill. Cultivars in India. Evidence-Based Complementary and Alternative Medicine, 2016. https://doi.org/10.1155/2016/4758734

Ramar, M. K., Chidambaram, K., Chandrasekaran, B., & Kandasamy, R. (2022). Standardization, in-silico and in-vivo safety assessment of methanol extract of Ziziphus mauritiana Lam leaves. Regulatory Toxicology and Pharmacology : RTP, 131. https://doi.org/10.1016/J.YRTPH.2022.105144

Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. G. (1973). Selenium: Biochemical Role as a Component of Glutathione Peroxidase. S00073-8

Sakna, S. T., Maghraby, Y. R., Abdelfattah, M. S., & Farag, M. A. (2022). Phytochemical diversity and pharmacological effects of triterpenes from genus Ziziphus: a comprehensive review. Phytochemistry Reviews. https://doi.org/10.1007/s11101-022-09835-y

Sarkar, P. K. (2002). A Quick Assay for Na+-K+-ATPase Specific Activity. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 57(5–6), 562–564. https://doi.org/10.1515/znc-2002-5-628

Shaheen, S., Arafah, M. M., Alshanwani, A. R., Fadda, L. M., Alhusaini, A. M., Ali, H. M., Hasan, I. H., Hagar, H., Alharbi, F. M. B., & AlHarth cience, 179(4073), 588–590. https://doi.org/10.1126 /SCIENCE.179.4073.588

Sai, K., Kai, S., Umemura, T., Tanimura, A., Hasegawa, R., Inoue, T., & Kurokawa, Y. (1998). Protective Effects of Green Tea on Hepatotoxicity, Oxidative DNA Damage and Cell Proliferation in the Rat Liver Induced by Repeated Oral Administration of 2-Nitropropane. Food and Chemical Toxicology, 36(12), 1043–1051. https://doi.org/10.1016/S0278-6915(98)

ii, A. (2021). Chitosan nanoparticles as a promising candidate for liver injury induced by 2-nitropropane: Implications of P53, iNOS, VEGF, PCNA, and CD68 pathways. Science Progress, 104(2), 1–19. https://doi.org/10.1177/00368504211011839

Sharifi-Rad, M., Anil Kumar, N. v., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., el Rayess, Y., Beyrouthy, M. el, Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., … Sharifi-Rad, J. (2020). Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00694

Shin, D. S., Seo, H., Yang, J. Y., Joo, J., Im, S. H., Kim, S. S., Kim, S. K., & Bae, M. A. (2018). Quantitative Evaluation of Cytochrome P450 3A4 Inhibition and Hepatotoxicity in HepaRG 3-D Spheroids. International Journal of Toxicology, 37(5), 393–403. https://doi.org/10.1177/ 1091581818780149/ASSET/IMAGES/LARGE/10.1177_1091581818780149-FIG7.JPEG

Singh, S., Mehrotra, S., Pandey, R., & Sandhir, R. (2005). Hepatotoxic effects of tert-butyl hydroperoxide (t-BHP) and protection by antioxidants. Indian Journal of Experimental Biology, 43(8), 728–731.

Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47(2), 389–394. https://doi.org/10.1016/0003-2697(72)90132-7

Tan, Y., Cheong, M. S., & Cheang, W. S. (2022). Roles of Reactive Oxygen Species in Vascular Complications of Diabetes: Therapeutic Properties of Medicinal Plants and Food. Oxygen, 2(3), 246–268. https://doi.org/10.3390/oxygen2030018

Trauner, M., & Fuchs, C. D. (2022). Novel therapeutic targets for cholestatic and fatty liver disease. Gut, 71(1), 194–209. https://doi.org/10.1136/gutjnl-2021-324305

Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., Emwas, A.-H., & Jaremko, M. (2020). Important Flavonoids and Their Role as a Therapeutic Agent. Molecules, 25(22), 5243. https://doi.org/10.3390/molecules25225243

Xu, J.-H., Yu, Y.-Y., & Xu, X.-Y. (2020). Management of chronic liver diseases and cirrhosis: current status and future directions. Chinese Medical Journal, 133(22), 2647–2649. https://doi.org/10.1097 /CM9.0000000000001084

Yücebilgiç, G., Bilgin, R., Tamer, L., & Tükel, S. (2003). Effects of lead on Na+-K+ ATPase and Ca+2 ATPase activities and lipid peroxidation in blood of workers. International Journal of Toxicology, 22(2), 95–97. https://doi.org/10.1080/10915810305096

Downloads

Published

2024-02-02

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.