Study of Pharmacologically Active Drugs Containing Quinazoline Pharmacophore: A Brief Overview

Main Article Content

Rizwan Ul Hasan
Syed Shariq Mian
Sadaf Arfi
Bushra Begum
Soumya Verma
Rizwan Ahmad
Imran Hussain
Mohammad Asif

Abstract

Heterocyclic compounds have been the subject of extensive research due to their diverse pharmacological effects. Among these molecules are quinazolinone analogs, which have demonstrated a range of pharmacological potentials. In search of novel therapeutic pharmaceutical molecules, medicinal chemistry researchers are drawn to the quinazolinone nucleus.  This article aims to provide an overview of the many pharmacological activities of the quinazolinone moiety. Based on the quinazolinone moiety, more modern molecules have been developed and synthesized. These compounds show negligible toxicity and outstanding anti-disease capabilities. This paper reviews several different quinazolinone analogs and makes recommendations for future research paths in the quest to create effective quinazolinone drugs for a range of biological objectives.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rizwan Ul Hasan, Syed Shariq Mian, Sadaf Arfi, Bushra Begum, Soumya Verma, Rizwan Ahmad, Imran Hussain, & Mohammad Asif. (2024). Study of Pharmacologically Active Drugs Containing Quinazoline Pharmacophore: A Brief Overview. Journal of Advanced Zoology, 45(1), 1166–1184. https://doi.org/10.53555/jaz.v45i1.3673
Section
Articles
Author Biographies

Rizwan Ul Hasan

Era College of Pharmacy, Era University, Lucknow, 226003, Uttar Pradesh, India.

Syed Shariq Mian

Era College of Pharmacy, Era University, Lucknow, 226003, Uttar Pradesh, India.

Sadaf Arfi

Era College of Pharmacy, Era University, Lucknow, 226003, Uttar Pradesh, India.

Bushra Begum

Era College of Pharmacy, Era University, Lucknow, 226003, Uttar Pradesh, India.

Soumya Verma

Era College of Pharmacy, Era University, Lucknow, 226003, Uttar Pradesh, India.

Rizwan Ahmad

Seth Vishambhar Nath Institute of Pharmacy, Lucknow, Uttar Pradesh, India.

Imran Hussain

Department of bioengineering, Faculty of Engineering and Information Technology, Integral University, Lucknow, 226026, India

Mohammad Asif

Professor, Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, 226003, Uttar Pradesh, India

References

Abou-Seri, S. M.; Abouzid, K.; Abou El Ella, D. A. A. Molecular Modeling Study and Synthesis of Quinazolinone-Arylpiperazine Derivatives as α1-Adrenoreceptor Antagonists. Eur. J. Med. Chem.2011, 46 (2), 647–658.

Ahmed, O. M.; Hussein, A. M.; Ahmed, R. R. Antidiabetic and Antioxidant Effects of Newly Synthesized Pyrimido[1,6-A]Pyrimidine Derivatives in Neonatal Streptozotocin-Induced Diabetic Rats. Med. Chem. 2012, 2, 020–028.

Amer, M.S., Browder, H.P. Effect of quazodine on phosphodiesterase. Proc Soc Exp Biol Med. 1971, 136(3), 750-752.

Asif, M. Chemical Characteristics, Synthetic Methods, and Biological Potential of Quinazoline and Quinazolinone Derivatives. Int. J. Med. Chem. 2014, 2014, 395637.

Badolato, M., Aiello, F., Neamati, N. 2,3-Dihydroquinazolin-4(1H)-one as a privileged scaffold in drug design. RSC Adv. 2018, 8(37), 20894–20921.

Belz, G.G., Stern, H.C., Butzer, R. Dose-response following single administrations of a new cardiac performance enhancer RO 13-6438 in normal volunteers. J. Cardiovas. Pharmacol. 1985, 7 (1), 86-90.

Borah, B., Swain, S., Patat, M., Chowhan, L.R. Recent advances and prospects in the organocatalytic synthesis of quinazolinones. Front Chem. 2022, 10, 991026.

Bouley, R.; Ding, D.; Peng, Z.; Bastian, M.; Lastochkin, E.; Song, W.; Suckow, M. A.; Schroeder, V. A.; Wolter, W. R.; Mobashery, S.; Chang, M. Structure-Activity Relationship for the 4(3H)-Quinazolinone Antibacterials. J. Med. Chem. 2016, 59 (10), 5011–5021.

Bridges, A. J.; Zhou, H.; Cody, D. R.; Rewcastle, G. W.; McMichael, A. Mc.; Showalter, H. D. H.; Fry, D. W.; Kraker, A. J.; Denny, W. A. Tyrosine Kinase Inhibitors. 8. an Unusually Steep Structure-Activity Relationship for Analogues of 4-(3-Bromoanilino)-6,7-Dimethoxyquinazoline (PD 153035), a Potent Inhibitor of the Epidermal Growth Factor Receptor. J. Med. Chem.1996, 39 (1), 267–276.

Bubenyák, M.; Takács, M.; Blazics, B.; Rácz, A.; Noszál, B.; Püski, L.; Kökösi, J.; Hermecz, I. Synthesis of bioisosteric 5-sulfa-rutaecarpine derivatives. Arkivoc, 2010, 11, 291–302.

Chaudhary, A.P., Shukla, A.K., Pandey, J., Kant, P. Study of developments of biologically active Quinazolinones derivatives: A review. Chem & Biol Interface, 2018, 8, 2, 62-83.

Chavan, B. B.; Bhalawane, P. P.; Kolsure, A. K.; Chabukswar, A.R. Synthesis and Evaluation of Some New 4, 6- Disubstituted Quinazoline Derivatives for Antimicrobial and Antifungal Activities. Asian J. Biomed. Pharm. Sci.2014, 33, 43–46.

Chen, K., Wang, K., Kirichian, A.M. 2006. In silico design, synthesis, and biological evaluation of radioiodinated quinazolinone derivatives for alkaline phosphatasemediated cancer diagnosis and therapy. Mol. Cancer Ther. 2006, 5 (12), 3001-13.

Chen, K.; Wang, K.; Kirichian, A. M.; Al Aowad, A. F.; Iyer, L. K.; Adelstein, S. J.; Kassis, A. I. In Silico Design, Synthesis, and Biological Evaluation of Radioiodinated Quinazolinone Derivatives for Alkaline Phosphatase-Mediated Cancer Diagnosis and Therapy. Mol. Cancer Ther. 2006, 5 (12), 3001–3013.

Cheng, C.M., Lee, Y.J., Wang, W.T., Hsu, C.T., Tsai, J.S., Wu, C.M., Ou, K.L., Yang, T.S. Determining the binding mode and binding affinity constant of tyrosine kinase inhibitor PD153035 to DNA using optical tweezers. Biochem Biophys Res Commun. 2011, 404(1), 297-301.

Cohen, E., Klarberg, B., Vaughan, J.R. Quinazolinone Sulfonamides. A New Class of Diuretic Agents. J. Am. Chem. Soci. 1960, 82, 2731-2735.

Cohen, E.; Klarberg, B.; Vaughan, J.R. Quinazolinone Sulfonamides. A New Class of Diuretic Agents 1. J. Am. Chem. Soc. 1960, 82 (11), 2731–2735.

Daly, P.A., Chatterjee, K., Viquerat, C.E. RO13-6438, a new inotrope-vasodilator: systemic and coronary hemodynamic effects in congestive heart failure. Am. J. Cardio. 1985, 55, 1539-44.

Darias, V.; Bravo, L.; Abdallah, S. S.; Sánchez Mateo, C. C. S.; Expósito-Orta, M. A.; Lissavetsky, J.; Manzanares, J.Synthesis and Preliminary Pharmacological Study of Thiophene Analogues of the Antipyretic and Analgesic Agent Ethenzamide. Arch. Pharmazie1992, 325 (2), 83–87.

Denis, D., Riendeau, D. Phosphodiesterase 4-dependent regulation of cyclic AMP levels and leukotriene B4 biosynthesis in human polymorphonuclear leukocytes. Euro. J. Pharmacol. 1999, 367, 343-50.

Devi, K.; Kachroo, M. Synthesis and antitubercular activity of some new 2, 3-disubstituted quinazolinones. Pharm.Chem.2014, 6, 353–359.

Doods, H., Hallermayer, G., Wu, D., Entzeroth, M., Rudolf, K., Engel, W., Eberlein, W. Pharmacological profile of BIBN4096BS, the first selective small molecule CGRP antagonist. Br J Pharmacol. 2000, 129, 420-423.

Eigenmann, R., Gerold, M., Holck, M. Cardiovascular profile of Ro 13-6438, a novel positive inotropic agent with vasodilating properties. J. Cardiovas. Pharmacol. 1984, 6 (3), 511-9.

El-Azab, A. S.; Eltahir, K. E. H. Design and Synthesis of Novel 7-Aminoquinazoline Derivatives: Antitumor and Anticonvulsant Activities. Bioorg. Med. Chem. Lett. 2012, 22 (5), 1879–1885.

Estlin, E. J.; Pinkerton, C.R.; Lewis, I. J.; Lashford, L.; McDowell, H. Mc.; Morland, B.; Kohler, J.; Newell, D. R.; Boddy, A. V.; Taylor, G. A.; Price, L.; Ablett, S.; Hobson, R.; Pitsiladis, M.; Brampton, M.; Clendeninn, N.; Johnston, A.; Pearson, A. D. J.. A Phase I Study of Nolatrexed Dihydrochloride in Children with Advanced Cancer. A United Kingdom Children’s Cancer Study Group Investigation. Br. J. Cancer, 2001, 84 (1), 11–18.

Faisal, M., Saeed, A. Chemical insights into the synthetic chemistry of quinazolines: recent advances. Front Chem. 2020, 8, 594717.

Ganguli, S.; Panigrahi, M. K.; Singh, P.; Shukla, P. K. One-pot synthesis of novel quinazoline derivatives and their antimicrobial activity. Int. J. Pharm. Pharm. Sci. 2012, 4, 434–440.

Garau, M.; Pereiro, M.; del Palacio, A.. In Vitro Susceptibilities of Malassezia Species to a New Triazole, Albaconazole (UR-9825), and Other Antifungal CompoundsAntimicrob. Agents Chemother. 2003, 47 (7), 2342–2344.

Gnainsky, Y.; Spira, G.; Paizi, M.; Bruck, R.; Nagler, A.; Abu-Amara, S. N.; Geiger, B.; Genina, O.; Monsonego-Ornan, E.; Pines, M.. Halofuginone, an Inhibitor of Collagen Synthesis by Rat Stellate Cells, Stimulates Insulin-Like Growth Factor Binding Protein-1 Synthesis by Hepatocytes.J.Hepatol.2004, 40 (2), 269–277.

Grivas, P.D., Day, K.C., Karatsinides, A., Paul, A., Shakir, N., Owainati, I., Liebert, M., Kunju, L.P., Thomas, D., Hussain, M., Day, M.L. Evaluation of the Antitumor Activity of Dacomitinib in Models of Human Bladder Cancer. Mol Med. 2013, 19(1), 367–376.

Holck, M., Thorens, S., Muggli, R., Eigenmann, R. Studies on the mechanism of positive inotropic activity of Ro 13-6438, a structurally novel cardiotonic agent with vasodilating properties. J. Cardiovas. Pharmacol. 1984, 6 (3), 520-30.

Hricovíniová, J., Hricovíniová, Z., Kozics, K. Antioxidant, Cytotoxic, Genotoxic, and DNA-Protective Potential of 2,3-Substituted Quinazolinones: Structure-Activity Relationship Study. Int J Mol Sci. 2021, 22(2), 610.

Hughes, A.N., Rafi, I., Griffin, M.J. Phase I studies with the nonclassical antifolate nolatrexed dihydrochloride (AG337, THYMITAQ) administered orally for 5 days. Clin. Cancer Res. 1999, 5(1), 111-8.

Hwang, D.F., Noguchi T. Tetrodotoxin poisoning. Adv. Food Nutr Res. 2007, 52, 141-236. Ishikawa, T., Kamide, R., Niimura, M. Photoleukomelanodermatitis (Kobori) induced by afloqualone. J. Dermatol. 1994, 21(6), 430-3.

Ishikawa, K.; Ihara, M.; Noguchi, K.; Mase, T.; Mino, N.; Saeki, T.; Fukuroda, T.; Fukami, T.; Ozaki, S.; Nagase, T. Biochemical and Pharmacological Profile of a Potent and Selective Endothelin B-Receptor Antagonist, BQ-788. Proc. Natl. Acad. Sci. U.S.A. 1994, 91 (11), 4892-4896.

Ishikawa, T.; Kamide, R.; Niimura, M. Photoleukomelanodermatitis (Kobori) Induced by Afloqualone. J. Dermatol. 1994, 21 (6), 430–433.

Jodrell, D. I.; Bowman, A.; Rye, R.; Byrne, B.; Boddy, A.; Rafi, I.; Taylor, G. A.; Johnston, A.; Clendeninn, N. J.. A Phase I Study of the Lipophilic Thymidylate Synthase Inhibitor Thymitaq™ (Nolatrexed Dihydrochloride) Given by 10-Day Oral Administration. Br. J. Cancer1999, 79 (5–6), 915–920.

Katague, B. D. Chemistry Reviewer Still in Lab. News Along Pike(newsletter of the Food and Drug Administration’s Center for Drug Evaluation and Research. 2006, 2.

Khan, I.; Zaib, S.; Batool, S.; Abbas, N.; Ashraf, Z.; Iqbal, J.; Saeed, A. Quinazolines and Quinazolinones as Ubiquitous Structural Fragments in Medicinal Chemistry: An Update on the Development of Synthetic Methods and Pharmacological Diversification. Bioorg. Med. Chem.2016, 24 (11), 2361–2381.

Kobayashi, Y. Capsaicin-like anti-obese activities of evodiamine from fruits of Evodia rutaecarpa, a vanilloid receptor agonist. In: Planta Med. 2001, 67(7), 628-33.

Lee, S. H.; Son, J. K.; Jeong, B. S.; Jeong, T. C.; Chang, H. W.; Lee, E. S.; Jahng, Y. D.. Progress in the Studies on Rutaecarpine.Molecules. 2008, 13(2), 272–300.

Mackay, H. J.; McInnes, A.; Paul, J.; Raby, N.; Lofts, F. J.; McDonald, A. C.; Soukop, M.; Fullarton, G. M.; Harris, A. L.; Garcia-Vargas, J.; Evans, T. R.. A Phase II Study of Epirubicin, Cisplatin and Raltitrexed Combination Chemotherapy (ECT) in Patients with Advanced Oesophageal and Gastric Adenocarcinoma. Ann.Oncol. 2001, 12 (10), 1407–1410.

Mallee, J.J., Salvatore, C.A., LeBourdelles, B., Oliver, K. R., Longmore, J., Koblan, K.S., Kane, S.A. Receptor activity-modifying protein 1 determines the species selectivity of non-peptide CGRP receptor antagonists. J. Biol. Chem. 2002, 277, 14294-14298.

McLaughlin, Noel, P., Evans, P. Dihydroxylation of vinyl sulfones: stereoselective synthesis of (+)- and (−)-febrifugine and halofuginone. J. Org. Chem. 2010, 75(2), 518.

Mishra, V. K.; Mishra, M.; Mishra, S.; Sahu, P.; Kashaw, S. K. Febrifugine analogues: Promising antimalarial agents. Asian J. Pharm. Pharmacol. 2015, 1, 10–15.

Mohammadkhani, L., Heravi, M.M. Microwave-Assisted Synthesis of Quinazolines and Quinazolinones: An Overview. Front Chem. 2020, 8, 580086.

Mohammed, E.R., Elmasry, G.F. Development of newly synthesised quinazolinone-based CDK2 inhibitors with potent efficacy against melanoma. J Enzyme Inhib Med Chem. 2022, 37(1), 686–700.

Molina, P.; Tárraga, A.; Gonzalez-Tejero, A.; Rioja, I.; Ubeda, A.; Terencio, M. C.; Alcaraz, M. J.. Inhibition of Leukocyte Functions by the Alkaloid Isaindigotone from Isatis Indigotica and Some New Synthetic Derivatives. J. Nat. Prod.2001, 64 (10), 1297–1300.

Ochiai, T., Ishida, R. Pharmacological studies on 6-amino- 2-fluoromethyl- 3-(o-tolyl)-4(3H)- quinazolinone (afloqualone), a new centrally acting muscle relaxant. (II) Effects on the spinal reflex potential and the rigidity. Japanese J. Pharmacol. 1982, 32(3), 427-38.

Ochiai, T.; Ishida, R. Pharmacological studies on 6-amin0-2-fluoromethyl-3-(o-tolyl)-4(3H)-quinazolinone (afloqualone), a new centrally acting muscle relaxant. (ii) effects on the spinal reflex potential and the rigidity. J. Pharmacol.1982, 32, 427–438.

Osinski, M.T., Schrör, K. Inhibition of platelet-derived growth factor-induced mitogenesis by phosphodiesterase 3 inhibitors: role of protein kinase A in vascular smooth muscle cell mitogenesis. Bio.chem. Pharmacol. 2000, 60(3), 381-7.

Pao. W., Miller V., Zakowski, M. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proceed Nat Acad Sci USA. 2004, 101(36), 13306-11.

Petrides, P.E. Anagrelide: what was new in 2004 and 2005?. Semin. Thromb. Hemost. 2006, 32, 399-408.

Priya, M. G. R.; Girija, K.; Ravichandran, N. Priya MGR, Girija K, Ravichandran N. Invitro study of anti-inflammatory and antioxidant activity of 4-(3H)-quinazolinone derivatives. Rasayan J. Chem. 2011, 4, 418–424.

Rakesh, K. P.; Darshini, N.; Shubhavathi, T.; Mallesha, N. Biological Applications of Quinazolinone Analogues: A Review. Org. Med. Chem. 2017, 2, 555–585.

Raymond, E., Faivre, S., Armand, J. Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs, 2000, 60 Suppl 1, 15-23.

Rezaeinasab, R., Jafari, E., Khodarahmi, G. Quinazolinone-based hybrids with diverse biological activities: A mini-review. J Res Med Sci. 2022, 27, 68.

Rivera, V.R., Poli, M.A., Bignami G.S. Prophylaxis and treatment with a monoclonal antibody of tetrodotoxin poisoning in mice. Toxicon. 1995, 33(9), 1231-7.

Selvam, T.P., Kumar, P.V. Quinazoline Marketed drugs-A Review. Res Pharm. 2011, 1(1), 1-21.

Shen, H. Illustrated Pharmacology Memory Cards: Pharmnemonics, 1st ed., Minireview, North Miami Beach, FL, USA, 2008, 13.

Smith, H.O., Blessing, J.A., Vaccarello, L. Trimetrexate in the treatment of recurrent or advanced leiomyosarcoma of the uterus: a phase II study of the Gynecologic Oncology Group. Gynecol. Oncol. 2002, 84(1),140-4.

Sorbera, L. A.; Bartroli, J.; Castaner, J. Albaconazole. Drugs Future, 2003, 28, 529–537.

Srivalli, K.; Satish, K. Synthesis, in Vitro Evaluation of Some Novel Quinazolin-4(3H)-One Derivatives as Anti-Tumor Agents. Chem.Sci. Trans. 2012, 1(3), 624–631.

Sundrud, M. S.; Koralov, S. B.; Feuerer, M.; Calado, D. P.; Kozhaya, A. E. Rhule-Smith, A.; Lefebvre, R.E.; Unutmaz, D.; Mazitschek, R.; Waldner, H.; Whitman, M.; Keller, T.; Rao, A. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science. 324, 2009, 1334–1338.

Traxler, P.; Green, J.; Mett, H.; Séquin, U.; Furet, P. Use of a Pharmacophore Model for the Design of EGFR Tyrosine Kinase Inhibitors: Isoflavones and 3-Phenyl-4(1H)-Quinolones.J. Med. Chem.1999, 42 (6), 1018–1026.

Wang, D., Gao, F. Quinazoline derivatives: synthesis and bioactivities. Chem Cent J. 2013, 7, 95.

Wdowiak, P., Matysiak, J., Kuszta, P., Czarnek, K., Niezabitowska, E., Baj, T. Quinazoline derivatives as potential therapeutic agents in urinary bladder cancer therapy. Front Chem. 2021, 9, 765552.

Widemann, B. C.; Balis, F. M.; Godwin, K. S.; McCully, C. Mc.; Adamson, P.C. The Plasma Pharmacokinetics and Cerebrospinal Fluid Penetration of the Thymidylate Synthase Inhibitor Raltitrexed (Tomudex) in a Nonhuman Primate Model.Cancer Chemother. Pharmacol. 1999, 44(6), 439–443.

Yan, J. W.; Li, Y. P.; Ye, W. J.; Chen, S. B.; Hou, J. Q.; Tan, J. H.; Ou, T. M.; Li, D.; Gu, L. Q.; Huang, Z. S.. Design, Synthesis and Evaluation of Isaindigotone Derivatives as Dual Inhibitors for Acetylcholinesterase and Amyloid Beta Aggregation. Bioorg. Med. Chem. 2012, 20 (8), 2527–2534.

Yousefi, B.; Azimi, A.; Majidinia, M.; Shafiei-Irannejad, V.; Badalzadeh, R.; Baradaran, B.; Zarghami, N.; Samadi, N. Balaglitazone Reverses P-Glycoprotein-Mediated Multidrug Resistance via Upregulation of PTEN in a PPARγ-Dependent Manner in Leukemia Cells. Tumour. Biol. 2017, 39 (10). DOI: 10.1177/1010428317716501

Zabludowski, J. R.; Zoccali, C.; Isles, C.G.; Murray, G.D. Inglis, R. Fraser, S.G. Ball. Effect of the 5-hydroxytryptamine type 2 receptor antagonist, ketanserin, on blood pressure, the renin-angiotensin system and sympatho-adrenal function in patients with essential hypertension. British J. Clin. Pharmacol. 1984, 17 (3), 309–316.

Zhang, G. H.; Xue, W. B.; An, Y. F.; Yuan, J. M.; Qin, J. K.; Pan, C. X.; Su, G. F.. Distinct Novel Quinazolinone Exhibits Selective Inhibition in MGC-803 Cancer Cells by Dictating Mutant p53 Function. Eur. J. Med. Chem. 2015, 95, 377–387.