The Spatial Epidemiology models on Covid-19 cases in India Mathematical models and data used in Spatial Epidemiology

Spatial Epidemiology

Authors

  • Deepak Kumar
  • Bhanu Sharma
  • Pooja Khurana
  • Richa Gupta

DOI:

https://doi.org/10.53555/jaz.v45i1.3642

Keywords:

Spatial Epidemiology, Mathematical models, COVID-19, Lockdown

Abstract

 

Geographical epidemiology has been description of geographical patterns of mortality rates as part of descriptive epidemiological investigations, with the goal of developing theories regarding disease causation. Disease mapping, disease clustering, and ecological analysis are the predominant methods of geographical epidemiology, having close relationships between them. For describing the transmission of an illness within a geographically dispersed population, many models incorporating frameworks based on individuals, networks, stochastic processes, as well as partial derivative equations have been made. However, these models need a large amount of information and even a large amount of computational performance. Keeping this in mind, we have tried to create deterministic models formulated as partial differential equations to model spatial epidemics in spatial domains. This has been by assuming two types of population, the susceptible population, and the infective population, considering the functions of space and time. COVID-19 is a global tragedy, with India likely to be among the most hit. The fluctuation in the dispersion of COVID-19-related well-being results is most likely connected with numerous basic factors, like segment, financial, or natural poisons related factors.

Downloads

Download data is not yet available.

Author Biographies

Deepak Kumar

Department of Applied Sciences, Manav Rachna International Institute of Research and Studies, Faridabad.

Bhanu Sharma

Department of Applied Sciences, Manav Rachna International Institute of Research and Studies, Faridabad

Pooja Khurana

Department of Applied Sciences, Manav Rachna International Institute of Research and Studies, Faridabad.

Richa Gupta

Department of Applied Science, Global Institute of Technology and Management, Gurgaon, India

References

Lau, H., Khosrawipour, V., Kocbach, P., Mikolajczyk, A., Ichii, H., Zacharski, M., Bania, J. and Khosrawipour, T. (2020). The association between international and domestic air traffic and the coronavirus (COVID-19) outbreak. Journal of Microbiology, Immunology and Infection, 53(3), 467-472. https://doi.org/10.1016/j.jmii.2020.03.026

Capitalblog, T. (2020). What are the Steps Taken by the Government to Fight Coronavirus in India. https://www.tatacapital.com/blog/trends/what-are-the-steps-taken-by-the-government-to-fight-coronavirus-in-india/

Liu, J., Zhou, J., Yao, J., Zhang, X., Li, L., Xu, X., Xiaotao H., Bo W., Shihua F., Tingting N., Jun Y., Yanjun S., Xiaowei R., Jingping N., Weihao Z. Sheng Li, Bin, L. and Zhang, K. (2020). Impact of meteorological factors on the COVID-19 transmission: A multi-city study in China. Science of the total environment, 726, 138513. https://doi.org/10.1016/j.scitotenv.2020.138513

Wu, X., Nethery, R. C., Sabath, M. B., Braun, D., and Dominici, F. (2020). Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. MedRxiv. doi: https://doi.org/10.1101/2020.04.05.20054502

Auler, A. C., Cássaro, F. A. M., Da Silva, V. O., and Pires, L. F. (2020). Evidence that high temperatures and intermediate relative humidity might favor the spread of COVID-19 in tropical climate: A case study for the most affected Brazilian cities. Science of the Total Environment, 729, 139090, DOI: 10.1016/j.scitotenv.2020.139090

Taghizadeh-Hesary, F., and Akbari, H. (2020). The powerful immune system against powerful COVID-19: A hypothesis. Medical hypotheses, 140, 109762. doi: 10.1016/j.mehy.2020.109762

Das, A., Ghosh, S., Das, K., Dutta, I., Basu, T., and Das, M. (2020). Re:(In) visible impact of inadequate WaSH Provision on COVID-19 incidences can be not be ignored in large and megacities of India. Public Health, 185, 34. doi: 10.1016/j.puhe.2020.05.035

Kang, J. Y., Michels, A., Lyu, F., Wang, S., Agbodo, N., Freeman, V. L., and Wang, S. (2020). Rapidly measuring spatial accessibility of COVID-19 healthcare resources: a case study of Illinois, USA. International journal of health geographics, 19(1), 1-17. doi: 10.1186/s12942-020-00229-x

Khalatbari-Soltani, S., Cumming, R. C., Delpierre, C., and Kelly-Irving, M. (2020). Importance of collecting data on socioeconomic determinants from the early stage of the COVID-19 outbreak onwards. J Epidemiol Community Health, 74(8), 620-623.DOI: 10.1136/jech-2020-214297

Tewara, M. A., Mbah-Fongkimeh, P. N., Dayimu, A., Kang, F., and Xue, F. (2018). Small-area spatial statistical analysis of malaria clusters and hotspots in Cameroon; 2000–2015. BMC infectious diseases, 18(1), 1-15. doi: 10.1186/s12879-018-3534-6.

Goovaerts, P. (2005). Geostatistical analysis of disease data: estimation of cancer mortality risk from empirical frequencies using Poisson kriging. International Journal of Health Geographics, 4(1), 1-33. doi: 10.1186/1476-072X-4-31

Zarikas, V., Poulopoulos, S. G., Gareiou, Z., and Zervas, E. (2020). Clustering analysis of countries using the COVID-19 cases dataset. Data in brief, 31, 105787. doi: 10.1016/j.dib.2020.105787

Azevedo, L., Pereira, M. J., Ribeiro, M. C., and Soares, A. (2020). Geostatistical COVID-19 infection risk maps for Portugal. International Journal of Health Geographics, 19(1), 1-8. DOI:10.1186/s12942-020-00221-5

Gangwar, H. S., and Ray, P. C. (2021). Geographic information system-based analysis of COVID-19 cases in India during pre-lockdown, lockdown, and unlock phases. International Journal of Infectious Diseases, 105, 424-435. DOI: 10.1016/j.ijid.2021.02.070

Bluhm, R., and Pinkovskiy, M. (2021). The spread of COVID-19 and the BCG vaccine: A natural experiment in reunified Germany. The Econometrics Journal, 24(3), 353-376. https://dx.doi.org/10.2139/ssrn.3604314

Franch-Pardo, I., Napoletano, B. M., Rosete-Verges, F., and Billa, L. (2020). Spatial analysis and GIS in the study of COVID-19. A review. Science of the total environment, 739, 140033. https://doi.org/10.1016/j.scitotenv.2020.140033

Gupta, R., Ghosh, A., Singh, A. K., and Misra, A. (2020). Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes and metabolic syndrome, 14(3), 211.DOI: 10.1016/j.dsx.2020.03.002

Kramer, A. M., Pulliam, J. T., Alexander, L. W., Park, A. W., Rohani, P., and Drake, J. M. (2016). Spatial spread of the West Africa Ebola epidemic. Royal Society open science, 3(8), 160294. https://doi.org/10.1098/rsos.160294

Kumar, A. (2020). Modeling geographical spread of COVID-19 in India using network-based approach. Medrxiv. doi: https://doi.org/10.1101/2020.04.23.20076489

Ma, Y., Zhao, Y., Liu, J., He, X., Wang, B., Fu, S., Jun Y., Jingping N., Ji Zhou , and Luo, B. (2020). Effects of temperature variation and humidity on the mortality of COVID-19 in Wuhan. medRxiv. DOI: 10.1016/j.scitotenv.2020.138226

Magal, P., Webb, G. F., and Wu, Y. (2020). Spatial spread of epidemic diseases in geographical settings: Seasonal influenza epidemics in Puerto Rico. arXiv preprint arXiv:1801.01856. Doi: 10.3934/dcdsb.2019223

Middya, A. I., and Roy, S. (2021). Geographically varying relationships of COVID-19 mortality with different factors in India. Scientific reports, 11(1), 1-12. DOI: 10.1038/s41598-021-86987-5

Murray, J. D. (1993). Geographic spread and control of epidemics. In Mathematical Biology (pp. 661-721). Springer, New York, NY. https://doi.org/10.1007/0-387-22438-6_13

Riley, S., Eames, K., Isham, V., Mollison, D., and Trapman, P. (2015). Five challenges for spatial epidemic models. Epidemics, 10, 68-71. DOI: 10.1016/j.epidem.2014.07.001

Subramanian, S. V., Karlsson, O., Zhang, W., and Kim, R. (2020). Geo-mapping of COVID-19 risk correlates across districts and parliamentary constituencies in India. DOI:10.1162/99608f92.68bb12e4

Talisuna A., Ali E. A., Yahaya A., Stephen M., Bonkoungou B., Musa E. O., Minkoulou E. M., Okeibunor J., Impouma B., Djingarey H.M., Yao N.K.M., Oka S., Yoti Z., and Fall I.S. (2020). Spatial and temporal distribution of infectious disease epidemics, disasters and other potential public health emergencies in the World Health Organisation Africa region, 2016–2018. Globalization and health, 16(1), 1-12. doi: 10.1186/s12992-019-0540-4.

Wang, L., Li, J., Guo, S., Xie, N., Yao, L., Cao, Y., Day S.D., Howard S.C., Graff J.C., Tianshu G., Jiafu Ji. Weikuan Gu. and Sun, D. (2020). Real-time estimation and prediction of mortality caused by COVID-19 with patient information-based algorithm. Science of the total environment, 727, 138394. doi: 10.1016/j.scitotenv.2020.138394.

Xie, J., and Zhu, Y. (2020). Association between ambient temperature and COVID-19 infection in 122 cities from China. Science of the Total Environment, 724, 138201. DOI: 10.1016/j.scitotenv.2020.138201.

Xiong, Y., Wang, Y., Chen, F., and Zhu, M. (2020). Spatial statistics and influencing factors of the novel coronavirus pneumonia 2019 epidemic in Hubei Province, China. doi: 10.3390/ijerph17113903

Xu, F., McCluskey, C. C., and Cressman, R. (2013). Spatial spread of an epidemic through public transportation systems with a hub. Mathematical biosciences, 246(1), 164-175. doi: 10.1016/j.mbs.2013.08.014

Zhu, Y., Xie, J., Huang, F., and Cao, L. (2020). Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Science of the total environment, 727, 138704. doi: 10.1016/j.scitotenv.2020.138704

Lau, H., Khosrawipour, V., Kocbach, P., Mikolajczyk, A., Ichii, H., Zacharski, M., Bania, J. and Khosrawipour, T. (2020). The association between international and domestic air traffic and the coronavirus (COVID-19) outbreak. Journal of Microbiology, Immunology and Infection, 53(3), 467-472. https://doi.org/10.1016/j.jmii.2020.03.026

Capitalblog, T. (2020). What are the Steps Taken by the Government to Fight Coronavirus in India. https://www.tatacapital.com/blog/trends/what-are-the-steps-taken-by-the-government-to-fight-coronavirus-in-india/

Liu, J., Zhou, J., Yao, J., Zhang, X., Li, L., Xu, X., Xiaotao H., Bo W., Shihua F., Tingting N., Jun Y., Yanjun S., Xiaowei R., Jingping N., Weihao Z. Sheng Li, Bin, L. and Zhang, K. (2020). Impact of meteorological factors on the COVID-19 transmission: A multi-city study in China. Science of the total environment, 726, 138513. https://doi.org/10.1016/j.scitotenv.2020.138513

Wu, X., Nethery, R. C., Sabath, M. B., Braun, D., and Dominici, F. (2020). Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. MedRxiv. doi: https://doi.org/10.1101/2020.04.05.20054502

Auler, A. C., Cássaro, F. A. M., Da Silva, V. O., and Pires, L. F. (2020). Evidence that high temperatures and intermediate relative humidity might favor the spread of COVID-19 in tropical climate: A case study for the most affected Brazilian cities. Science of the Total Environment, 729, 139090, DOI: 10.1016/j.scitotenv.2020.139090

Taghizadeh-Hesary, F., and Akbari, H. (2020). The powerful immune system against powerful COVID-19: A hypothesis. Medical hypotheses, 140, 109762. doi: 10.1016/j.mehy.2020.109762

Das, A., Ghosh, S., Das, K., Dutta, I., Basu, T., and Das, M. (2020). Re:(In) visible impact of inadequate WaSH Provision on COVID-19 incidences can be not be ignored in large and megacities of India. Public Health, 185, 34. doi: 10.1016/j.puhe.2020.05.035

Kang, J. Y., Michels, A., Lyu, F., Wang, S., Agbodo, N., Freeman, V. L., and Wang, S. (2020). Rapidly measuring spatial accessibility of COVID-19 healthcare resources: a case study of Illinois, USA. International journal of health geographics, 19(1), 1-17. doi: 10.1186/s12942-020-00229-x

Khalatbari-Soltani, S., Cumming, R. C., Delpierre, C., and Kelly-Irving, M. (2020). Importance of collecting data on socioeconomic determinants from the early stage of the COVID-19 outbreak onwards. J Epidemiol Community Health, 74(8), 620-623.DOI: 10.1136/jech-2020-214297

Tewara, M. A., Mbah-Fongkimeh, P. N., Dayimu, A., Kang, F., and Xue, F. (2018). Small-area spatial statistical analysis of malaria clusters and hotspots in Cameroon; 2000–2015. BMC infectious diseases, 18(1), 1-15. doi: 10.1186/s12879-018-3534-6.

Goovaerts, P. (2005). Geostatistical analysis of disease data: estimation of cancer mortality risk from empirical frequencies using Poisson kriging. International Journal of Health Geographics, 4(1), 1-33. doi: 10.1186/1476-072X-4-31

Zarikas, V., Poulopoulos, S. G., Gareiou, Z., and Zervas, E. (2020). Clustering analysis of countries using the COVID-19 cases dataset. Data in brief, 31, 105787. doi: 10.1016/j.dib.2020.105787

Azevedo, L., Pereira, M. J., Ribeiro, M. C., and Soares, A. (2020). Geostatistical COVID-19 infection risk maps for Portugal. International Journal of Health Geographics, 19(1), 1-8. DOI:10.1186/s12942-020-00221-5

Gangwar, H. S., and Ray, P. C. (2021). Geographic information system-based analysis of COVID-19 cases in India during pre-lockdown, lockdown, and unlock phases. International Journal of Infectious Diseases, 105, 424-435. DOI: 10.1016/j.ijid.2021.02.070

Bluhm, R., and Pinkovskiy, M. (2021). The spread of COVID-19 and the BCG vaccine: A natural experiment in reunified Germany. The Econometrics Journal, 24(3), 353-376. https://dx.doi.org/10.2139/ssrn.3604314

Franch-Pardo, I., Napoletano, B. M., Rosete-Verges, F., and Billa, L. (2020). Spatial analysis and GIS in the study of COVID-19. A review. Science of the total environment, 739, 140033. https://doi.org/10.1016/j.scitotenv.2020.140033

Gupta, R., Ghosh, A., Singh, A. K., and Misra, A. (2020). Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes and metabolic syndrome, 14(3), 211.DOI: 10.1016/j.dsx.2020.03.002

Kramer, A. M., Pulliam, J. T., Alexander, L. W., Park, A. W., Rohani, P., and Drake, J. M. (2016). Spatial spread of the West Africa Ebola epidemic. Royal Society open science, 3(8), 160294. https://doi.org/10.1098/rsos.160294

Kumar, A. (2020). Modeling geographical spread of COVID-19 in India using network-based approach. Medrxiv. doi: https://doi.org/10.1101/2020.04.23.20076489

Ma, Y., Zhao, Y., Liu, J., He, X., Wang, B., Fu, S., Jun Y., Jingping N., Ji Zhou , and Luo, B. (2020). Effects of temperature variation and humidity on the mortality of COVID-19 in Wuhan. medRxiv. DOI: 10.1016/j.scitotenv.2020.138226

Magal, P., Webb, G. F., and Wu, Y. (2020). Spatial spread of epidemic diseases in geographical settings: Seasonal influenza epidemics in Puerto Rico. arXiv preprint arXiv:1801.01856. Doi: 10.3934/dcdsb.2019223

Middya, A. I., and Roy, S. (2021). Geographically varying relationships of COVID-19 mortality with different factors in India. Scientific reports, 11(1), 1-12. DOI: 10.1038/s41598-021-86987-5

Murray, J. D. (1993). Geographic spread and control of epidemics. In Mathematical Biology (pp. 661-721). Springer, New York, NY. https://doi.org/10.1007/0-387-22438-6_13

Riley, S., Eames, K., Isham, V., Mollison, D., and Trapman, P. (2015). Five challenges for spatial epidemic models. Epidemics, 10, 68-71. DOI: 10.1016/j.epidem.2014.07.001

Subramanian, S. V., Karlsson, O., Zhang, W., and Kim, R. (2020). Geo-mapping of COVID-19 risk correlates across districts and parliamentary constituencies in India. DOI:10.1162/99608f92.68bb12e4

Talisuna A., Ali E. A., Yahaya A., Stephen M., Bonkoungou B., Musa E. O., Minkoulou E. M., Okeibunor J., Impouma B., Djingarey H.M., Yao N.K.M., Oka S., Yoti Z., and Fall I.S. (2020). Spatial and temporal distribution of infectious disease epidemics, disasters and other potential public health emergencies in the World Health Organisation Africa region, 2016–2018. Globalization and health, 16(1), 1-12. doi: 10.1186/s12992-019-0540-4.

Wang, L., Li, J., Guo, S., Xie, N., Yao, L., Cao, Y., Day S.D., Howard S.C., Graff J.C., Tianshu G., Jiafu Ji. Weikuan Gu. and Sun, D. (2020). Real-time estimation and prediction of mortality caused by COVID-19 with patient information-based algorithm. Science of the total environment, 727, 138394. doi: 10.1016/j.scitotenv.2020.138394.

Xie, J., and Zhu, Y. (2020). Association between ambient temperature and COVID-19 infection in 122 cities from China. Science of the Total Environment, 724, 138201. DOI: 10.1016/j.scitotenv.2020.138201.

Xiong, Y., Wang, Y., Chen, F., and Zhu, M. (2020). Spatial statistics and influencing factors of the novel coronavirus pneumonia 2019 epidemic in Hubei Province, China. doi: 10.3390/ijerph17113903

Xu, F., McCluskey, C. C., and Cressman, R. (2013). Spatial spread of an epidemic through public transportation systems with a hub. Mathematical biosciences, 246(1), 164-175. doi: 10.1016/j.mbs.2013.08.014

Zhu, Y., Xie, J., Huang, F., and Cao, L. (2020). Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Science of the total environment, 727, 138704. doi: 10.1016/j.scitotenv.2020.138704

Downloads

Published

2024-01-17

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.