Isolation and Characterization of Bacterial Lipids and its Application as Antioxidant Agent

Main Article Content

B. M. Govilkar
A. N. Vemula

Abstract

The study was aimed to isolate the oleaginous bacteria from various soil samples and characterize the bacterial lipids to study its suitable application. The study was carried out from June 2023 to October 2023 in the microbiology lab at Changu Kana Thakur Arts, Commerce & Science College, New Panvel (Autonomous). The soil samples were collected from the garden, dumping, and compost area at New Panvel. The bacterial isolation was carried out by simple streak plate method, followed by screening by Sudan black B staining method. Production of oleaginous bacteria was done, followed by extraction of lipids by Bligh and dyer method. The extracted lipids were characterized by TLC and FTIR. The antioxidant potential of extracted lipids was assessed by DPPH method. The different oleaginous bacteria were isolated from soil sample and screened by Sudan black B staining method. The results indicate phospholipids, TAG, esters of fatty acids were mainly present. The extracted lipid samples S1C2, S2C4, S2C2, S1C1, S3C4, S2C1, S3C2 have 83.30%, 80%, 36.60%, 23.30%, 26.60%, 16.6%, 6.6% antioxidant potential respectively.

Downloads

Download data is not yet available.

Article Details

How to Cite
B. M. Govilkar, & A. N. Vemula. (2023). Isolation and Characterization of Bacterial Lipids and its Application as Antioxidant Agent. Journal of Advanced Zoology, 44(S8), 133–140. https://doi.org/10.53555/jaz.v44iS8.3525
Section
Articles
Author Biographies

B. M. Govilkar

Department of Microbiology, Changu Kana Thakur Arts, Commerce & Science College, New Panvel

A. N. Vemula

Department of Microbiology, Changu Kana Thakur Arts, Commerce & Science College, New Panvel

References

Amer, N. N., Elbahloul, Y., Embaby, A. M., & Hussein, A. (2017). The novel oleaginous bacterium Sphingomonas sp. EGY1 DSM 29616: a value-added platform for renewable biodiesel. World Journal of Microbiology and Biotechnology, 33(7). https://doi.org/10.1007/s11274-017-2305-7

Bajwa, K., Bishnoi, N., Toor, M., Gupta, S., Sharma, P., Kirrolia, A., Kumar, S., Sharma, J., & Selvan, S. (2018). Isolation, Screening, Characterization of Indigenous Oleaginous Bacteria: Evaluation of Various Carbon and Nitrogen Sources as Substrates for Single Celled Oil Producing Bacteria. Asian Journal of Biotechnology and Bioresource Technology, 3(1), 1–12. https://doi.org/10.9734/ajb2t/2018/39260

Bhutada, G., Kavšček, M., Hofer, F., Gogg-Fassolter, G., Schweiger, M., Darnhofer, B., Kordiš, D., Birner-Gruenberger, R., & Natter, K. (2018). Characterization of a lipid droplet protein from Yarrowia lipolytica that is required for its oleaginous phenotype. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1863(10), 1193–1205. https://doi.org/10.1016/j.bbalip.2018.07.010

Bi, K., He, Z., Gao, Z., Zhao, Y., Fu, Y., Cheng, J., Xie, J., Jiang, D., & Chen, T. (2016). Integrated omics study of lipid droplets from Plasmodiophora brassicae. Scientific Reports, 6. https://doi.org/10.1038/srep36965

Breil, C., Abert Vian, M., Zemb, T., Kunz, W., & Chemat, F. (2017). “Bligh and Dyer” and Folch methods for solid–liquid–liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents. International Journal of Molecular Sciences, 18(4). https://doi.org/10.3390/ijms18040708

Campos, J. M., Montenegro Stamford, T. L., Sarubbo, L. A., de Luna, J. M., Rufino, R. D., & Banat, I. M. (2013). Microbial biosurfactants as additives for food industries. Biotechnology Progress, 29(5), 1097–1108. https://doi.org/10.1002/btpr.1796

Cao, Z., Wang, X., Pang, Y., Cheng, S., & Liu, J. (2019). Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13727-9

Cea, M., Sangaletti-Gerhard, N., Acuña, P., Fuentes, I., Jorquera, M., Godoy, K., Osses, F., & Navia, R. (2015). Screening transesterifiable lipid accumulating bacteria from sewage sludge for biodiesel production. Biotechnology Reports, 8, 116–123. https://doi.org/10.1016/j.btre.2015.10.008

Deeba, F., Pruthi, V., & Negi, Y. S. (2016). Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production. Bioresource Technology, 213, 96–102. https://doi.org/10.1016/j.biortech.2016.02.105

Durval, I. J. B., Ribeiro, B. G., Aguiar, J. S., Sarubbo, L. A., Rufino, R. D., & Converti, A. (2021). Application of a biosurfactant produced by bacillus cereus ucp 1615 from waste frying oil as an emulsifier in a cookie formulation. Fermentation, 7(3). https://doi.org/10.3390/fermentation7030189

Enshaeieh, M., Nahvi, I., & Madani, M. (2014). Improving microbial oil production with standard and native oleaginous yeasts by using Taguchi design. International Journal of Environmental Science and Technology, 11(3), 597–604. https://doi.org/10.1007/s13762-013-0373-2

Fakas, S., Galiotou-Panayotou, M., Papanikolaou, S., Komaitis, M., & Aggelis, G. (2007). Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzyme and Microbial Technology, 40(5), 1321–1327. https://doi.org/10.1016/j.enzmictec.2006.10.005

Fashogbon, R. O., Adebayo, B., Musa, V., & Femi-Ola, T. (2021). Lipolytic Activities of Bacteria and Fungi Isolated from Soil Samples. Microbiology Research Journal International, 27–43. https://doi.org/10.9734/mrji/2021/v31i530318

Geoffrey, I., Chin, G. J., Lie, W., & Misson, M. (2022). Optimization of lipid production by locally isolated Rhodotorula toruloides using response surface methodology. Borneo International Journal of Biotechnology (BIJB, 2, 31–43. https://doi.org/10.51200/bijb.v2i.3041

Grootveld, M., Percival, B. C., Leenders, J., & Wilson, P. B. (2020). Potential adverse public health effects afforded by the ingestion of dietary lipid oxidation product toxins: Significance of fried food sources. Nutrients, 12(4). https://doi.org/10.3390/nu12040974

Guo, H., Chen, H., Fan, L., Linklater, A., Zheng, B., Jiang, D., & Qin, W. (2017). Enzymes produced by biomass-degrading bacteria can efficiently hydrolyze algal cell walls and facilitate lipid extraction. Renewable Energy, 109, 195–201. https://doi.org/10.1016/j.renene.2017.03.025

Jiru, T. M., & Abate, D. (2014). Oleaginous microorganisms, diversity, lipid biosynthesis pathway and strain improvement. WebPub Journal of Scientific Research, 2(6), 55–65. http://www.researchwebpub.org/wjsr

Jones, A. D., Bou Jones, A. D., Boundy-Mills, K. L., Barla, G. F., Kumar, S., Ubanwa, B., & Balan, V. (2019). Microbial lipid alternatives to plant lipids. In Methods in Molecular Biology (Vol. 1995, pp. 1–32). Humana Press Inc. https://doi.org/10.1007/978-1-4939-9484-7_1

Karim, A., Yousuf, A., Islam, M. A., Naif, Y. H., Faizal, C. K. M., Alam, M. Z., & Pirozzi, D. (2018). Microbial lipid extraction from Lipomyces starkeyi using irreversible electroporation. Biotechnology Progress, 34(4), 838–845. https://doi.org/10.1002/btpr.2625

Kharlamenko, V. I., Zhukova, N. v, Khotimchenko, S. v, Svetashev, V. I., & Kamenev, G. M. (1995). Fatty acids as markers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands) (Vol. 120).

Khobragade, C., Gophane, S. R., Banasavade, V. B., & Marathe, N. (2020). Isolation and characterization of oleaginous yeasts from dairy waste. Indian Journal of Dairy Science, 73(3), 236–241. https://doi.org/10.33785/ijds.2020.v73i03.007

Kumar, R. R., Rao, P. H., & Arumugam, M. (2015). Lipid extraction methods from microalgae: A comprehensive review. In Frontiers in Energy Research (Vol. 3, Issue JAN). Frontiers Media S.A. https://doi.org/10.3389/fenrg.2014.00061

Kurosawa, K., Laser, J., & Sinskey, A. J. (2015). Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. Biotechnology for Biofuels, 8(1). https://doi.org/10.1186/s13068-015-0258-3

Lin Li, S., Lin, Q., Ran Li, X., Xu, H., Xi Yang, Y., Rong Qiao, D., & Cao, Y. (2012). BIODIVERSITY OF THE OLEAGINOUS MICROORGANISMS IN TIBETAN PLATEAU. Brazilian Journal of Microbiology, 627–634.

Liu, T., Chen, Z., Xiao, Y., Yuan, M., Zhou, C., Liu, G., Fang, J., & Yang, B. (2022). Biochemical and Morphological Changes Triggered by Nitrogen Stress in the Oleaginous Microalga Chlorella vulgaris. Microorganisms, 10(3). https://doi.org/10.3390/microorganisms10030566

Mahan, K. M., Le, R. K., Wells, T., Anderson, S., Yuan, J. S., Stoklosa, R. J., Bhalla, A., Hodge, D. B., & Ragauskas, A. J. (2018). Production of single cell protein from agro-waste using Rhodococcus opacus. Journal of Industrial Microbiology and Biotechnology, 45(9), 795–801. https://doi.org/10.1007/s10295-018-2043-3

Mrunalini, B. R., & Girisha, S. T. (2017). Screening and Characterization of Lipid inclusions in Bacteria by Fluorescence Microscopy and Mass Spectrometry as a Source for Biofuel Production. Indian Journal of Science and Technology, 10(21), 1–10. https://doi.org/10.17485/ijst/2017/v10i21/111382

Patel, A., Karageorgou, D., Rova, E., Katapodis, P., Rova, U., Christakopoulos, P., & Matsakas, L. (2020). An overview of potential oleaginous microorganisms and their role in biodiesel and omega-3 fatty acid-based industries. In Microorganisms (Vol. 8, Issue 3). MDPI AG. https://doi.org/10.3390/m icroorganisms8030434

Patel, A., Mikes, F., & Matsakas, L. (2018). An overview of current pre-treatment methods used to improve lipid extraction from oleaginous microorganisms. In Molecules (Vol. 23, Issue 7). MDPI AG. https://doi.org/10.3390/molecules23071562

Patel, A., Pruthi, V., & Pruthi, P. A. (2017). Synchronized nutrient stress conditions trigger the diversion of CDP-DG pathway of phospholipids synthesis towards de novo TAG synthesis in oleaginous yeast escalating biodiesel production. Energy, 139, 962–974. https://doi.org/10.1016/j.energy.2017.08.052

Qadeer, S., Khalid, A., Mahmood, S., Saleem, A. R., & Anjum, M. (2023). Valorization of Food Waste Slurry as Potential Candidate for Lipid Accumulation: A Concept of Oleaginous Bio-Refinery. Fermentation, 9(2). https://doi.org/10.3390/fermentation9020163

Ren, H. Y., Liu, B. F., Ma, C., Zhao, L., & Ren, N. Q. (2013). A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: Effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnology for Biofuels, 6(1). https://doi.org/10.1186/1754-6834-6-143

Shields-Menard,; ), Amirsadeghi, M., & Blake, J. (2017). The Effects of Model Aromatic Lignin Compounds on Growth and Lipid Accumulation of Rhodococcus rhodochrous. In Janet R. Donaldson (Issue 1). Rafael Hernandez. http://www.elsevier.com/open-access/userlicense/1.0/

Urbano, S. B., di Capua, C., Cortez, N., Farías, M. E., & Alvarez, H. M. (2014). Triacylglycerol accumulation and oxidative stress in Rhodococcus species: Differential effects of pro-oxidants on lipid metabolism. Extremophiles, 18(2), 375–384. https://doi.org/10.1007/s00792-013-0623-8

Valdés, G., Mendonça, R. T., & Aggelis, G. (2020). Lignocellulosic biomass as a substrate for oleaginous microorganisms: A review. In Applied Sciences (Switzerland) (Vol. 10, Issue 21, pp. 1–43). MDPI AG. https://doi.org/10.3390/app10217698

van de Faculteit Geowetenschappen, M., & Rattray, J. E. (n.d.). GEOLOGICA ULTRAIECTINA Ladderane Lipids in Anammox Bacteria: Occurrence, Biosynthesis and Application as Environmental Markers.

Wang, B., Rezenom, Y. H., Cho, K. C., Tran, J. L., Lee, D. G., Russell, D. H., Gill, J. J., Young, R., & Chu, K. H. (2014). Cultivation of lipid-producing bacteria with lignocellulosic biomass: Effects of inhibitory compounds of lignocellulosic hydrolysates. Bioresource Technology, 161, 162–170. https://doi.org/10.1016/j.biortech.2014.02.133

Wu, B., Zheng, D., Zhou, Z., Wang, J. L., He, X. L., Li, Z. W., Yang, H. N., Qin, H., Zhang, M., Hu, G. Q., & He, M. X. (2017). The Enrichment of Microbial Community for Accumulating Polyhydroxyalkanoates Using Propionate-Rich Waste. Applied Biochemistry and Biotechnology, 182(2), 755–768. https://doi.org/10.1007/s12010-016-2359-2

Yellapu, S. K., Bharti, Kaur, R., Kumar, L. R., Tiwari, B., Zhang, X., & Tyagi, R. D. (2018). Recent developments of downstream processing for microbial lipids and conversion to biodiesel. In Bioresource Technology (Vol. 256, pp. 515–528). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2018.01.129

Zhan, J., Hong, Y., & Hu, H. (2016). Effects of nitrogen sources and C/N ratios on the lipid-producing potential of chlorella sp. HQ. Journal of Microbiology and Biotechnology, 26(7), 1290–1302. https://doi.org/10.4014/jmb.1512.12074

Zheng, C. (2020). Isolation and Characterization of Lipid-Producing Bacillus sp. TC14. Journal of Physics: Conference Series, 1549(3). https://doi.org/10.1088/1742-6596/1549/3/032027

Durval, I. J. B., Ribeiro, B. G., Aguiar, J. S., Sarubbo, L. A., Rufino, R. D., & Converti, A. (2021). Application of a biosurfactant produced by bacillus cereus ucp 1615 from waste frying oil as an emulsifier in a cookie formulation. Fermentation, 7(3). https://doi.org/10.3390/fermentation7030189

Cao, Z., Wang, X., Pang, Y., Cheng, S., & Liu, J. (2019). Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13727-9

Campos, J. M., Montenegro Stamford, T. L., Sarubbo, L. A., de Luna, J. M., Rufino, R. D., & Banat, I. M. (2013). Microbial biosurfactants as additives for food industries. Biotechnology Progress, 29(5), 1097–1108. https://doi.org/10.1002/btpr.1796