Zika Virus NS5 Protein novel Inhibitors from Limonium sinense phytochemicals using Glide: In silico Approach

Main Article Content

Dr Jayaprakash Shanmugam
Dr Saravanan Govindaraj
Dr Geetha Jayaprakash
Kiruthiga Natarajan
Dr Balaji Pandiyan

Abstract

Zika virus infection causes significant congenital disabilities, in addition to microcephaly while an excited mother is infected during pregnancy. Mosquito vectors are the main spreaders of the zika virus which includes Aedes albopictus and Aedes aegypti. presently clear-cut and definite treatment for the zika virus is not yet available. engrossing in silico approach present study determines the active fighter constituents from aboriginal antiviral herbs to regulate the zika virus. The Lipinski rule filter was used for the Phytoconstituents to determine their molecular interactions and pharmacokinetic studies. NS5 polymerase protein (PDB ID; 5U04) and ligand interactions were determined using Schrodinger Maestro software version 12.7. The outcome displayed that Quercetin, Moupinamide, Epigallocatechin gallate, and Myricetin have sharpened synergism with the asparte active site of NS5 RdRps with docking score (-6.087, -5.838, -5.812, -5.418 Kcal/mol). Analysing the pharmacokinetic study hydrogen bonds with 2.5 Å for target Aspartate amino acid have prime activity. the present study propounds that Quercetin can be used as an inhibitor of the Zika virus.

Downloads

Download data is not yet available.

Article Details

How to Cite
Dr Jayaprakash Shanmugam, Dr Saravanan Govindaraj, Dr Geetha Jayaprakash, Kiruthiga Natarajan, & Dr Balaji Pandiyan. (2024). Zika Virus NS5 Protein novel Inhibitors from Limonium sinense phytochemicals using Glide: In silico Approach. Journal of Advanced Zoology, 45(1), 445–453. https://doi.org/10.53555/jaz.v45i1.3307
Section
Articles
Author Biographies

Dr Jayaprakash Shanmugam

Department of Pharmaceutics, Arunai College of Pharmacy, Tiruvannamalai, Tamil Nadu, India

Dr Saravanan Govindaraj

Department of Pharmaceutical Chemistry & Analysis, School of Pharmaceutical Sciences,Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai - 600 117, Tamil Nadu, India.

 Tel.: +91-9963023257

Dr Geetha Jayaprakash

Department of Pharmacognosy, Arunai College of Pharmacy, Tiruvannamalai, Tamil Nadu, India

Kiruthiga Natarajan

Department of Pharmaceutical Chemistry, KMCH College of Pharmacy, Kalappatti Road, Coimbatore.

Dr Balaji Pandiyan

Department of Pharmacology, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai - 600 117, Tamil Nadu, India

References

Alera, M. T., Hermann, L., Tac-An, I. A., Klungthong, C., Rutvisuttinunt, W., Manasatienkij, W & Yoon, I. K. (2015). Zika virus infection, Philippines, 2012. Emerging infectious diseases, 21(4), 722.

Aliota, M. T., Bassit, L., Bradrick, S. S., Cox, B., Garcia-Blanco, M. A., Gavegnano, C, & Weaver, S. C. (2017). Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antiviral Research, 144, 223-246.

Bollati, V., & Baccarelli, A. (2010). Environmental epigenetics. Heredity, 105(1), 105-112.

Buathong, R., Hermann, L., Thaisomboonsuk, B., Rutvisuttinunt, W., Klungthong, C., Chinnawirotpisan, P & Plipat, T. (2015). Detection of Zika virus infection in Thailand, 2012–2014. The American Journal of tropical medicine and Hygiene, 93(2), 380.

Chaung SS, Lin CC, Lin J, Yu KH, Hsu YF, Yen MH (2003). The hepatoprotective effects of Limonium sinense against carbon tetrachloride and β‐D‐galactosamine intoxication in rats. Phytotherapy Research.17(7): 784-91.

Diallo, D., Sall, A. A., Diagne, C. T., Faye, O., Faye, O., Ba, Y, & Diallo, M. (2014). Zika virus emergence in mosquitoes in southeastern Senegal, 2011. PloS one, 9(10), e109442.

Duan, W., Song, H., Wang, H., Chai, Y., Su, C., Qi, J, & Gao, G. F. (2017). The crystal structure of Zika virus NS 5 reveals conserved drug targets. The EMBO journal, 36(7), 919-933.

Elfiky AA, Elshemey WM. Molecular dynamics simulation revealed

binding of nucleotide inhibitors to ZIKV polymerase over 444 nanoseconds. J Med Virol. 2018;90: 13–18.

Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A, & Mainz, D. T. (2006). Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of medicinal chemistry, 49(21), 6177-6196.

Geetha, Rakesh Kumar Jat and A. Prakash (2022). Potential inhibitor of Camellia sinensis (L.) O. KuntzePhytochemicals on hepatitis c virus NS5B: In silico approach. Ann. Phytomed., Special Issue 1, AU Pharmacon(TRIPS-2022):S57-S65.

Gourinat, A. C., O’Connor, O., Calvez, E., Goarant, C, & Dupont-Rouzeyrol, M. (2015). Detection of Zika virus in urine. Emerging infectious diseases, 21(1), 84.

Hsu, W. C., Chang, S. P., Lin, L. C., Li, C. L., Richardson, C. D., Lin, C. C, & Lin, L. T. (2015). Limonium sinense and gallic acid suppress hepatitis C virus infection by blocking early viral entry. Antiviral Research, 118, 139-147.

Lin, L. C., Kuo, Y. C., & Chou, C. J. (2000). Anti-herpes simplex virus type-1 flavonoids and a new flavanone from the root of Limonium sinense. Planta Medica, 66(04), 333-336.

Malet, H., Massé, N., Selisko, B., Romette, J. L., Alvarez, K., Guillemot, J. C, & Canard, B. (2008). The flavivirus polymerase is a target for drug discovery. Antiviral research, 80(1), 23-35.

Ng, K. K. S., Arnold, J. J., & Cameron, C. E. (2008). Structure-function relationships among RNA-dependent RNA polymerases. RNA interference, 137-156.

Pattnaik, A., Palermo, N., Sahoo, B. R., Yuan, Z., Hu, D., Annamalai, A. S, & Xiang, S. H. (2018). Discovery of a non-nucleoside RNA polymerase inhibitor for blocking Zika virus replication through in silico screening. Antiviral Research, 151, 78-86.

Priya, S., Kumar, N. S, & Hemalatha, S. (2018). Antiviral phytocompounds target envelops protein to control the Zika virus. Computational biology and chemistry, 77, 402-412.

Ramharack, P., Oguntade, S., & Soliman, M. E. (2017). Delving into Zika virus structural dynamics–a closer look at NS3 helicase loop flexibility and its role in drug discovery. RSC advances, 7(36), 22133-22144.

Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of computer-aided molecular design, 27(3), 221-234.

Shan, C., Xie, X., Muruato, A. E., Rossi, S. L., Roundy, C. M., Azar, S. R., & Shi, P. Y. (2016). An infectious cDNA clone of Zika virus to study viral virulence, mosquito transmission, and antiviral inhibitors. Cell host & microbe, 19(6), 891-900.

Sharma, P., Kaur, R., Upadhyay, A. K., & Kaushik, V. (2020). In-silico prediction of a peptide-based vaccine against Zika virus. International Journal of Peptide Research and Therapeutics, 26(1), 85-91.

Singh, P., Chakraborty, P., He, D. H., & Mergia, A. (2019). Extract prepared from the leaves of Ocimum basilicum inhibits the entry of the Zika virus. Acta virologica, 63(3), 316-321.

Tice, C. M. (2001). Selecting the right compounds for screening: does Lipinski's Rule of 5 for pharmaceuticals apply to agrochemicals? Pest Management Science: formerly Pesticide Science, 57(1), 3-16.

Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of medicinal chemistry, 45(12), 2615-2623.

Wu J, Liu W, Gong P. A structural overview of RNA-dependent RNA polymerases from the Flaviviridae family. Int J Mol Sci. 2015;16: 12943–12957.

Yadav, R., Selvaraj, C., Aarthy, M., Kumar, P., Kumar, A., Singh, S. K., & Giri, R. (2021). Investigating into the molecular interactions of flavonoids targeting NS2B-NS3 protease from ZIKA virus through in-silico approaches. Journal of Biomolecular Structure and Dynamics, 39(1), 272-284.

Zhao, B., Yi, G., Du, F., Chuang, Y. C., Vaughan, R. C., Sankaran, B, & Li, P. (2017). Structure and function of the Zika virus full-length NS5 protein. Nature communications, 8(1), 1-9.