F.J Mock Method For Hydrological Moel In Water Reliability Study In Leuwi Padjadjaran II Reservoir

Main Article Content

Sarah Fitri Soerya
Chay Asdak
Dwi Rustam Kendarto
Teuku Yan
Agung Riyadi

Abstract

Padjadjaran University built the Leuwi Padjadjaran II Reservoir as a water harvesting facility and conservation area in the Cikeruh Sub-watershed area. This reservoir serves as a water reservoir before being channelled to other river branches and can be utilized as a water reserve collector. The water supply and the degree of water demand in the residential, non-domestic, agricultural, fishery, animal, and industrial sectors are impacted by land use changes and climate changes. This study aims to ascertain the state of the water balance in the Leuwi Padjadjaran II Catchment Area to know the deficit condition and calculate the reservoir serve. F.J. Mock Method was used to examine water availability based on climatology data. SNI 6728.1-2015, PUPR Minister Circular Letter (SE PUPR) Number 7 of 2018, and associated studies were used to analyze water demand. The findings revealed that total water demand was 133.506,09 m3/year with an average of 11.125,5 m3/month, and total water supply was 138.732,90 m3/year with an average of 11.561,08 m3/month. Throughout January-May and November-December, the water balance in the Leuwi Padjadjaran II Catchment Area was in surplus. Deficient water balance conditions occur from June-October, requiring water supply. Leuwi Padjadjaran II Catchment Area has a surplus of water, so it is sufficient to be utilized. Still, it is not evenly distributed, so there is a water shortage in several sectors, such as agriculture. To make the Leuwi Padjadjaran II Reservoir useful, conservation measures must be taken to manage the water demand.


 

Downloads

Download data is not yet available.

Article Details

How to Cite
Sarah Fitri Soerya, Chay Asdak, Dwi Rustam Kendarto, Teuku Yan, & Agung Riyadi. (2023). F.J Mock Method For Hydrological Moel In Water Reliability Study In Leuwi Padjadjaran II Reservoir. Journal of Advanced Zoology, 44(5), 884–893. https://doi.org/10.53555/jaz.v44i5.3292
Section
Articles
Author Biographies

Sarah Fitri Soerya

Technology of Agroindustry, Universitas Padjadjaran, Ir. Soekarno street km. 21, Sumedang, 45363, Indonesia

Chay Asdak

Technology of Agroindustry, Universitas Padjadjaran, Ir. Soekarno street km. 21, Sumedang, 45363, Indonesia

Dwi Rustam Kendarto

Technology of Agroindustry, Universitas Padjadjaran, Ir. Soekarno street km. 21, Sumedang, 45363, Indonesia

Teuku Yan

Geological Engineering, Universitas Padjadjaran, Ir. Soekarno street km. 21, Sumedang, 45363, Indonesia

Agung Riyadi

National Research and Innovation Agency, Raya Jakarta-Bogor street, Bogor, 16915, Indonesia

References

N. Bafdal, S. D. N. NP, and K. Amaru, “Analisis Rasio Luas Daerah Tangkapan Air (Catchment Area) dan Areal Budidaya Pertanian (Cultivated Area) dalam Desain Model Run Off Management Integrated Farming di Lahan Kering,” Jurnal Teknik Sipil, vol. 21, no. 3, p. 205, Dec. 2014, doi: 10.5614/jts.2014.21.3.3.

S. Berezovskaya, D. Yang, and D. L. Kane, “Compatibility analysis of precipitation and runoff trends over the large Siberian watersheds,” Geophys Res Lett, vol. 31, no. 21, p. n/a-n/a, Nov. 2004, doi: 10.1029/2004GL021277.

D. N. Ratri et al., “Calibration of ECMWF SEAS5 based streamflow forecast in Seasonal hydrological forecasting for Citarum river basin, West Java, Indonesia,” J Hydrol Reg Stud, vol. 45, p. 101305, Feb. 2023, doi: 10.1016/j.ejrh.2022.101305.

V. M. Chowdary, M. D. Rao, and C. S. Jaiswal, “Study of infiltration process under different experimental conditions,” Agric Water Manag, vol. 83, no. 1–2, pp. 69–78, May 2006, doi: 10.1016/ j.agwat.2005.09. 001.

J. S. Sanderson and D. J. Cooper, “Ground water discharge by evapotranspiration in wetlands of an arid intermountain basin,” J Hydrol (Amst), vol. 351, no. 3–4, pp. 344–359, Apr. 2008, doi: 10.1016/j.jhydrol. 2007.12.023.

Y. Li, Y. Qin, and P. Rong, “Evolution of potential evapotranspiration and its sensitivity to climate change based on the Thornthwaite, Hargreaves, and Penman–Monteith equation in environmental sensitive areas of China,” Atmos Res, vol. 273, p. 106178, Aug. 2022, doi: 10.1016/j.atmosres.2022.106178.

G. Castro, J. Pires, R. Motta, L. Bernucci, F. Marinho, and A. Merheb, “Unsaturated numerical analysis of a railroad track substructure considering climate data,” Transportation Geotechnics, vol. 31, p. 100662, Nov. 2021, doi: 10.1016/j.trgeo.2021.100662.

M. Tariq, M. Kashif, N. Ahmed, Z. Ullah, J. N. Mendez, and M. A. F. Miraj, “Reservoir characteristics of Datta Formation (Early Jurassic), Marwat-Khisor Ranges, sub-Himalayas, Pakistan,” Pet Sci, Apr. 2023, doi: 10.1016/j.petsci.2023.04.012.

D. Yang, X. Yang, N. An, and Z. Xie, “Effect of land use conversion on heavy metals and magnetic minerals on water reservoir riparian soils,” Chemosphere, vol. 331, p. 138771, Aug. 2023, doi: 10.1016/j. chemosphere.2023.138771.

C. Asdak, S. Supian, and Subiyanto, “Watershed management strategies for flood mitigation: A case study of Jakarta’s flooding,” Weather Clim Extrem, vol. 21, pp. 117–122, Sep. 2018, doi: 10.1016/j.wace. 2018.08.002.

M. Aboelnour, M. W. Gitau, and B. A. Engel, “A Comparison of Streamflow and Baseflow Responses to Land-Use Change and the Variation in Climate Parameters Using SWAT,” Water (Basel), vol. 12, no. 1, p. 191, Jan. 2020, doi: 10.3390/w12010191.

S. Pan et al., “Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling,” Hydrol Earth Syst Sci, vol. 24, no. 3, pp. 1485–1509, Mar. 2020, doi: 10.5194/hess-24-1485-2020.

M. Kumar, A. P. Sahu, N. Sahoo, S. S. Dash, S. K. Raul, and B. Panigrahi, “Global-scale application of the RUSLE model: a comprehensive review,” Hydrological Sciences Journal, vol. 67, no. 5, pp. 806–830, Apr. 2022, doi: 10.1080/02626667.2021.2020277.

a. MASNANG, N. SINUKABAN, and S. -, “KAJIAN TINGKAT ALIRAN PERMUKAAN DAN EROSI, PADA BERBAGAI TIPE PENGGUNAAN LAHAN DI SUB DAS JENNEBERANG HULU,” Jurnal Agroteknos, vol. 4, no. 1, Apr. 2015, doi: 10.56189/ja.v4i1.203.

F., P. F. Kaming, and W. I. Ervianto, “Model Pemeliharaan Infrastruktur Embung Berbasis Biaya Siklus Hidup Di Kabupaten Sleman DIY,” Jurnal Manajemen Aset Infrastruktur & Fasilitas, vol. 3, no. 0, Jun. 2019, doi: 10.12962/j26151847.v3i0.5730.

a. Q. Kawara and I. H. Elsebaie, “Development of Rainfall Intensity, Duration and Frequency Relationship on a Daily and Sub-Daily Basis (Case Study: Yalamlam Area, Saudi Arabia),” Water (Basel), vol. 14, no. 6, p. 897, Mar. 2022, doi: 10.3390/w14060897.

M. Jayanti, A. Sabar, H. D. Ariesyady, M. Marselina, and M. Qadafi, “A comparison of three water discharge forecasting models for monsoon climate region: A case study in cimanuk-jatigede watershed Indonesia,” Water Cycle, vol. 4, pp. 17–25, 2023, doi: 10.1016/j.watcyc.2023.01.002.

a. A. Rofiq, L. D. Krisnawati, and S. Winarto, “Kajian Kebutuhan Air Bersih PDAM Ngancar Kabupaten Kediri,” Jurnal Manajemen Teknologi & Teknik Sipil, vol. 1, no. 1, May 2018, doi: 10.30737/jurmateks.v1i1.146.

Pramono, S. Sisno, and M. Sholichin, “Study of Water Management Development in Petung Swamp Areas at the Province of East Kalimantan,” Civil and Environmental Science, vol. 004, no. 02, pp. 173–182, Oct. 2021, doi: 10.21776/ub.civense.2021.00402.7.

H. Y. S. H. Nugroho et al., “Forty Years of Soil and Water Conservation Policy, Implementation, Research and Development in Indonesia: A Review,” Sustainability, vol. 14, no. 5, p. 2972, Mar. 2022, doi: 10.3390/su14052972.

M. Jayanti, A. Sabar, H. D. Ariesyady, M. Marselina, and M. Qadafi, “A comparison of three water discharge forecasting models for monsoon climate region: A case study in cimanuk-jatigede watershed Indonesia,” Water Cycle, vol. 4, pp. 17–25, 2023, doi: 10.1016/j.watcyc.2023.01.002.

a. Murdhianti, L. M. Limantara, P. T. Juwono, and D. Sisinggih, “Equivalence of Rainfall Type and Maximum Discharge to the Drainage Channel Capacity,” Journal of Southwest Jiaotong University, vol. 56, no. 5, pp. 485–493, Oct. 2021, doi: 10.35741/issn.0258-2724.56.5.44.

S. Mohammed et al., “Estimation of soil erosion risk in southern part of Syria by using RUSLE integrating geo informatics approach,” Remote Sens Appl, vol. 20, p. 100375, Nov. 2020, doi: 10.1016/j.rsase.2020.100375.

R. Lew et al., “WEPPcloud: An online watershed-scale hydrologic modeling tool. Part I. Model description,” J Hydrol (Amst), vol. 608, p. 127603, May 2022, doi: 10.1016/j.jhydrol.2022.127603.

E. Zeng, P. Li, and J. Zhou, “Water environmental efficiency in different urban spatial structure patterns: Evidence from a panel of Chinese urban districts,” J Clean Prod, vol. 379, p. 134834, Dec. 2022, doi: 10.1016/j.jclepro.2022.134834.

J. Xue, Z. Huo, and I. Kisekka, “Assessing impacts of climate variability and changing cropping patterns on regional evapotranspiration, yield and water productivity in California’s San Joaquin watershed,” Agric Water Manag, vol. 250, p. 106852, May 2021, doi: 10.1016/j.agwat.2021.106852.

Y. Li et al., “Effects of irrigation and fertilization on grain yield, water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of Northwest China,” Agric Water Manag, vol. 260, p. 107277, Feb. 2022, doi: 10.1016/j.agwat.2021.107277.

Y. Zhang et al., “Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts,” Agric Water Manag, vol. 282, p. 108266, May 2023, doi: 10.1016/j.agwat.2023.108266.

Z. Zhang et al., “Forest water-use efficiency: Effects of climate change and management on the coupling of carbon and water processes,” For Ecol Manage, vol. 534, p. 120853, Apr. 2023, doi: 10.1016/j.foreco.2023.120853.

J. Peng et al., “The conflicts of agricultural water supply and demand under climate change in a typical arid land watershed of Central Asia,” J Hydrol Reg Stud, vol. 47, p. 101384, Jun. 2023, doi: 10.1016/j.ejrh.2023.101384.

S.-M. Jun, M.-S. Kang, S. Hwang, J. Park, and J.-H. Song, “Flood Vulnerability Assessment for Prioritizing and Evaluating Rehabilitation of Ungauged Reservoirs Considering Climate Change,” Water (Basel), vol. 12, no. 7, p. 1901, Jul. 2020, doi: 10.3390/w12071901.

G. W. Tefera, Y. T. Dile, R. Srinivasan, T. Baker, and R. L. Ray, “Hydrological modeling and scenario analysis for water supply and water demand assessment of Addis Ababa city, Ethiopia,” J Hydrol Reg Stud, vol. 46, p. 101341, Apr. 2023, doi: 10.1016/j.ejrh.2023.101341.

R. Hu et al., “Coupling water cycle processes with water demand routes of vegetation using a cascade causal modeling approach in arid inland basins,” Science of The Total Environment, vol. 840, p. 156492, Sep. 2022, doi: 10.1016/j.scitotenv.2022.156492.

F. Macchione, G. De Lorenzo, and A. A. Graziano, “Study of key aspects in simplified modelling of man-made earthen dams breaching: breach shape, erosion process and hydraulics,” J Hydrol (Amst), vol. 620, p. 129425, May 2023, doi: 10.1016/j.jhydrol.2023.129425.

M. J. Ahmad, G. Cho, and K. S. Choi, “Historical climate change impacts on the water balance and storage capacity of agricultural reservoirs in small ungauged watersheds,” J Hydrol Reg Stud, vol. 41, p. 101114, Jun. 2022, doi: 10.1016/j.ejrh.2022.101114.

Y. Ai, Z. Ma, X. Xie, T. Huang, and H. Cheng, “Optimization of ecological reservoir operation rules for a northern river in China: Balancing ecological and socio-economic water use,” Ecol Indic, vol. 138, p. 108822, May 2022, doi: 10.1016/j.ecolind.2022.108822.

M. Zhao, Y. Liu, Y. Wang, Y. Chen, and W. Ding, “Effectiveness assessment of reservoir projects for flash flood control, water supply and irrigation in Wangmo Basin, China,” Science of The Total Environment, vol. 851, p. 157918, Dec. 2022, doi: 10.1016/j.scitotenv.2022.157918.

H. Qiu, L. Chen, J. Zhou, Z. He, and H. Zhang, “Risk analysis of water supply-hydropower generation-environment nexus in the cascade reservoir operation,” J Clean Prod, vol. 283, p. 124239, Feb. 2021, doi: 10.1016/j.jclepro.2020.124239.

Y. Zhang et al., “Agricultural Drought Assessment in a Typical Plain Region Based on Coupled Hydrology–Crop Growth Model and Remote Sensing Data,” Remote Sens (Basel), vol. 14, no. 23, p. 5994, Nov. 2022, doi: 10.3390/rs14235994.

V. L. Roland, E. Crowley-Ornelas, and K. Rodgers, “Investigating hydrologic alteration in the Pearl and Pascagoula River basins using rule-based model trees,” Environmental Modelling & Software, vol. 163, p. 105667, May 2023, doi: 10.1016/j.envsoft.2023.105667.