Endothermy in Birds and Mammals: Evolution of Metabolism, Body Temperature, Sleep and Activity Duration – An Evolutionary Scenario

Main Article Content

Valery M. Gavrilov

Abstract

Basal metabolic rate (BMR) in a taxon correlates with its evolutionary age: the later a clade diverged, the higher its metabolic rate and the longer its activity period will be. The paper proposes a hypothesis about the decisive role of the BMR level at the onset of the explosive radiation of endothermic animals. The study determines how the BMR level and activity duration of each group correlated with the time of its splitting on the geochronological scale. The following scenario of evolving BMR is suggested. Each taxon formed its specific basal metabolic level according to the ability to maintain temperature homeostasis under the environmental conditions that prevailed during its formation. The first level is typical of Monotremes, which were the first to split from the basal mammalian clade. This level is minimally sufficient to maintain temperature homeostasis under a very limited range of conditions. The next level characteristic of marsupials makes it possible to maintain temperature homeostasis under a broader range of environmental conditions and to have a more protracted period of activity. Finally, the basal metabolic level that is typical of eutherians was formed to have protracted activity with the terrestrial lifestyle. In birds, the lowest BMR is in Palaeognathae, almost equal to Eutheria. Then, it increases later and is higher in Non-Passeriformes, and finally reaches the highest levels in Passeriformes only 50 mya.

Downloads

Download data is not yet available.

Article Details

How to Cite
Valery M. Gavrilov. (2023). Endothermy in Birds and Mammals: Evolution of Metabolism, Body Temperature, Sleep and Activity Duration – An Evolutionary Scenario. Journal of Advanced Zoology, 44(S7), 1358–1376. https://doi.org/10.53555/jaz.v44iS7.3226
Section
Articles
Author Biography

Valery M. Gavrilov

Department of Vertebrate Zoology and Zvenigorod Biological Station, M.V. Lomonosov Moscow State University, Russia

References

Amiot, R., Lecuyer, C., Buffetaut, E., Escarguel, G., Fluteau, F. & Martineau, F. (2006). Oxygen isotopes from biogenic apatite’s suggest widespread endothermy in Cretaceous dinosaurs. Earth and Planetary Science Letters 246, 41–54.

Aristakesyan EA (2016). Evolutionary aspects of sleep-wake cycle development in vertebrates (Modern state of the IG Karmanova's sleep evolution theory). Journal of Evolutionary Biochemistry and Physiology 52: 141–160.

Avaria-Llautureo J, Hernández CE, Rodríguez-Serrano E, Venditti C (2019). The decoupled nature of basal metabolic rate and body temperature in endotherm evolution. Nature 572: 651–654

Averianov, A.O., & Lopatin, A.V. (2014). On the Phylogenetic Position of Monotremes (Mammalia, Monotremata). Paleontological Journal. 48, 426–446

Barrick, R. E. & Showers, W. J. (1994). Thermophysiology of Tyrannosaurus rex: evidence from oxygen isotopes. Science 265, 222–224.

Beck, RMD, Baillie C (2018). Improvements in the fossil record may largely resolve current conflicts between morphological and molecular estimates of mammal phylogeny. Proceedings of the Royal Society B: Biological Sciences B 285: 20181632. http://dx.doi.org/10.1098/rspb.2018.1632. .

Bennett AF, Ruben JA (1979). Endothermy and activity in vertebrates. Science 206: 649–654.

Benton MJ (2005) Vertebrate Palaeontology. In: Benton MJ (Ed.) 1. Vertebrates, Fossil I. (3rd edn.). Wiley-Blackwell, 472 pp.

Benton MJ (2020). The origin of endothermy in synapsids and archosaurs and arms races in the Triassic. Gondwana Research 100 (2021): 261–289. https://doi.org/10.1016/j.gr.2020.08.003/.

Brusatte SL, O’Connor JK, Jarvis ED (2015). The Origin and Diversification of Birds. Current Biology 2519: R888–R898. doi: 10.1016/j.cub.2015.08.003.

Butler R. J., Brusatte S. L., Reich M., Nesbitt S. J., Schoch R. R., Hornung J. J. (2011) The Sail-Backed Reptile Ctenosauriscus from the Latest Early Triassic of Germany and the Timing and Biogeography of the Early Archosaur Radiation. PLoS ONE : Vol. 6, iss. 10, no. e25693. — P. 1—28. — ISSN 1932-6203. — doi:10.1371/journal.pone.0025693.

Campbell S, Tobler I, (1984). Animal sleep: A review of sleep duration across phylogeny. Neuroscience and Biobehavioral Reviews 8: 269–300.

Capellini I, Nunn CL, McNamara P, Preston BT, Barton RA (2008). Energetic constraints, not predation, influence the evolution of sleep patterning in mammals. Functional Ecology 22: 847–853. https://doi.org/10.1111/j.1365-2435.2008.01449.x

Claramunt, S., & Cracraft, J., (2015). A new time tree reveals Earth history’s imprint on the evolution of modern birds. Science Advances Vol 1, Issue 11 DOI: 10.1126/sciadv.1501005

(doi: 10.1126/sciadv.1501005).

Clarke A, Pörtner HO (2010). Temperature, metabolic power and the evolution of endothermy. Biological Reviews 85(4): 703–727. doi: 10.1111/j.1469-185X.2010. 00122.x

Clarke, A., Rothery, P. & Isaac, N. J. B. (2010). Scaling of basal metabolic rate with body mass and temperature in mammals. Journal of Animal Ecology. Vol. 79, No. 3 (May 2010), pp. 610-619. https://doi.org/10.1111/j.1365-2656.2010.01672.x

Colbert, E.H., Cowles, R. B. & Bogert, C. M. (1946). Temperature tolerances in the American alligator and their bearing on the habits, evolution, and extinction of the dinosaurs. Bulletin of the American Museum of Natural History 86, 329–373.

Clarke, A. & Rothery, P. (2008). The scaling of body temperature in birds and mammals. Functional Ecology 22, 58–67:

Cowles, R. B. (1946). Fur and feathers: a result of high temperatures? Science 103, 74–75. Cowles, R. B. (1958). Possible origin of dermal temperature regulation. Evolution 12, 347–357.

Crompton, A. W., Taylor, C. R. & Jagger, J. A. (1978). Evolution of endothermy in mammals. Nature 272, 333–336.

de Ricqlès, A., Padian, K., Knoll, F., and Horner, J.R. (2008). On the origin of high growth rates in archosaurs and their ancient relatives: Complementary histological studies on Triassic archosauriforms and the problem of a „phylogenetic signal“ in bone histology. Annales de Paléontologie. 94 (2): 57-76. doi:10.1016/j.annpal.2008.03.002. Retrieved 2008-09-10.

Eagle RA, Tütken T, Martin TS, Tripati AK, Fricke HC, Melissa Connely M, Cifelli RI, Eiler JM (2011) Dinosaur Body Temperatures Determined from Isotopic (13C-18O) Ordering in Fossil Biominerals. Science, v. 333. 22

Eagle RA, Edwin A. Schauble EA, , Tripati AK, John M, Eiler JM (2010) Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite.

Proceedings of the National Academy of Sciences 107 (23) 10377-10382 https://doi.org/10.1073/pnas.0911115107

Else, P. L. & Hulbert, A. J. (1987). Evolution of mammalian endothermic metabolism: ‘leaky’ membranes as a source of heat. American Journal of Physiology 240, R1–R7.

Else, P. L., Turner, N. & Hulbert, A. J. (2004). The evolution of endothermy: role for membranes and molecular activity. Physiological and Biochemical Zoology 77, 950–958

Ericson PGP, Christidis L, Cooper A, Irestedt M, Jackson J, Johansson US, Norman JA (2002) A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proc R Soc Lond B. 2002, 269: 235-241. 10.1098/rspb.2001.1877

Ericson, P.G.P., Klopfstein, S., Irestedt, M., Nguyen, J.M.T., & Nylande, J.A.A. (2014). Dating the diversification of the major lineages of Passeriformes (Aves). BMC Evolutionary Biology, 4 (1), 8, 1-15. www.biomedcentral.com/1471-2148/14/8, doi: 10.1186/1471-2148-14-8.

Farmer, C. G. (2000). Parental care: the key to understanding endothermy and other convergent features in birds and mammals. American Naturalist 155, 326–334.

Farmer, C. G. (2003). Reproduction: the adaptive significance of endothermy. American Naturalist 162, 826–840;

Field, S., Brodribb, T.J., Iglesias, A., Chatelet, D.S., Baresch, A., Upchurch, G.R. Gomez, B., Mohr, B.A.R., Coiffard, C., Kvacek, J., & Jaramillo, C. (2011). Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. PNAS, 108, 8363–8366.

Flannery TF, Rich TH, Vickers-Rich P, Ziegler T, Veatch EG and Helgen KM (2022) A review of monotreme (Monotremata) evolution. Alcheringa 46: 3–20. DOI: 10.1080/03115518.2022.202590.

Fricke HC, Rogers RR (2000) Multiple taxon–multiple locality approach to providing oxygen isotope evidence for warm-blooded theropod dinosaurs. Geology 28 (9), 799-802

Gavrilov VM (2013) Ecological, functional, and thermodynamic prerequisites and consequences of the origin and development of homoiothermy: A case study of avian energetics. Biology Bulletin Reviews, 3, 27-48. doi:10.1134/S2079086413010040

Gavrilov VM (2014). Ecological and scaling analysis of the energy expenditure of rest, activity, flight, and evaporative water loss in Passeriformes and Non-Passeriformes in relation to seasonal migrations and to the occupation of boreal stations in high and moderate latitudes. Quarterly Review of Biology 89: 107–150.

Gavrilov VM, Golubeva TB, Bushuev AV (2022a). Evolution of metabolic scaling among the tetrapod: effect of phylogeny, the geologic time of class formation, and uniformity of species within a class. Integrative Zoology 17: 904–917. doi: 10.1111/1749-4877.12611.

Gavrilov VM, Golubeva TB, Warrack G, Bushuev AV. (2022b). Metabolic Scaling in Birds and Mammals: How Taxon Divergence Time, Phylogeny, and Metabolic Rate Affect the Relationship between Scaling Exponents and Intercepts. Biology 11(7): 1067. https://doi.org/10.3390/biology11071067.

Gavrilov VM, Golubeva TB, Bushuev AV (2023). Metabolic rate, sleep duration, and body temperature in evolution of mammals and birds: the influence of geological time of principal groups divergence. ZooKeys. Vol. 1148. P. 1–27.

Genoud M, Isler K, Martin RD (2018). Comparative analyses of basal rate of metabolism in mammals: data selection does matter. Biological Reviews 93: 404–438. .

Golubeva TB (1997) Type of ontogeny and species-specific stimulation in the development of auditory sensitivity in birds; Development of the basilar papilla and hearing sensitivity in birds. Harwood Academic Publishing. Gordon and Breach Publishing Group London, Amsterdam, 201 pp

Hayes JP (2010). Metabolic rates, genetic constraints, and the evolution of endothermy. Journal of Evolutionary Biology 23: 1868–1877

Hillenius WJ & Ruben JA (2004). The evolution of endothermy in terrestrial vertebrates: who? when? why? Physiological and Biochemical Zoology 77, 1019–1024

Hulbert A J & Else PL (1989). The evolution of endothermic metabolism: mitochondrial activity and changes in cellular composition. American Journal of Physiology 256, R1200–R1208.

Hulbert A J & Else PL (1999). Membranes as possible pacemakers of metabolism. Journal of Theoretical Biology 199, 257–274.

Hulbert A J & Else PL (2000). Mechanisms underlying the cost of living in animals. Annual Review of Physiology 62, 207–235.

Hulbert A J & Else PL (2004). Basal metabolic rate: history, composition, regulation, and usefulness. Physiological and Biochemical Zoology 77, 869–876.

Hulbert A J & Else PL (2005). Membranes and the setting of energy demand. Journal of Experimental Biology 208, 1593–1599.

Jha, V.M., Jha, S.K. (2020). Sleep: Evolutionary and Adaptive Changes in Birds and Mammals. In: Sleep: Evolution and Functions. Springer, Singapore. https://doi.org/10.1007/978-981-15-7175-6_3

Joiner WJ (2016) Unraveling the Evolutionary Determinants of Sleep. Curr Biol Oct 24;26(20):R1073-R1087. doi: 10.1016/j.cub.2016.08.068.

Jones KE, Safi K (2011). Ecology and evolution of mammalian biodiversity. Philosophical Transactions of the Royal Society B: Biological Sciences 366 (1577): 2451–2461. .

Jønsson KA, Lessard J-P, Ricklefs RF (2015). The evolution of morphological diversity in continental assemblages of passerine birds. Evolution 69: 879–889.

Karmanova IG (1982). Evolution of Sleep: Stages of the Formation of the 'Wakefulness-Sleep’ Cycle in vertebrates. Ass. Koella P ed. Basel, Kindle edition.

Kendeigh SC, Dolnik VR, Gavrilov VM (1977). Avian energetics. In: Pinowski J, Kendeigh SC (eds.), Granivorous Birds in Ecosystems (pp. 127–204). Cambridge University Press

King JR, Farner DS, 1961. Energy metabolism, thermoregulation and body temperature. Biology and Comparative Physiology of Birds. New York, London: Academic Press. 2: 215-288. .

Koteja P (2000). Energy assimilation, parental care and the evolution of endothermy. Proceedings of the Zoological Society of London, Series B 267, 479–484.

Koteja P (2004). The evolution of concepts on the evolution of endothermy in birds and mammals. Physiological and Biochemical Zoology 77, 1043–1050.

Krassilov VA (1997) Angiosperm Origins: Morphological and Ecological Aspects. Pensoft Publishers

Lee MSY & Beck RMD (2015). Mammalian Evolution: A Jurassic Spark. Current Biology

, R753–R773 (doi: 10.1016/j.cub.2015.07.008, 2015).

Lesku JA, Meyer LCR, Fuller A, Maloney SK, Dell’Omo G, Vyssotski AL, Rattenborg NC (2011). Ostriches Sleep like Platypuses. PLoS One 6(8): e23203 doi:10.1371/journal.pone.0023203

McNamara P, Barton RA, Nunn CL (2009). Evolution of sleep. Phylogenetic and functional perspectives. Cambridge University Press, 277 p.

Martin CJ (1903). Thermal adjustment and respiratory exchange in monotremes and mammals. Philosophical Transactions of the Royal Society of London, Series B 195, 1–37.

Meng J (2014). Mesozoic mammals of China: implications for phylogeny and early evolution of mammals. National Science Review 1: 521–542.

Nespolo RF, González-Lagos C, Solano-Iguaran JJ, Elfwing M, Garitano-Zavala A, Mañosa S, Alonso JC, Altimiras J (2017). Aerobic power and flight capacity in birds: a phylogenetic test of the heart-size hypothesis. Journal of Experimental Biology 221(1): jeb162693. doi:10.1242/jeb.162693.

Norris R (2018). Cretaceous Thermal Maximum ~85-90 Ma. Scripps Institution of Oceanography. Available from: http://scrippsscholars.ucsd.edu/rnorris/ book/cretaceous-thermal-maximum-85-90-ma.

Phillips MJ, Fruciano C (2018). The soft explosive model of placental mammal evolution. BMC Evolutionary Biology 18: 104–117 doi.org/10.1186/s12862-018-1218-x.

Pigot AL, Trisos CH, Tobias JA 2016. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proceedings of the Royal Society B: Biological Sciences 283: 20152 013 (https://doi.org/10.1098/rspb.2015.2013).

P¨ortner HO (2004). Climate variability and the energetic pathways of evolution: the origin of endothermy in mammals and birds. Physiological and Biochemical Zoology 77, 959–981.

Rasnitsyn AP, Bashkuev AS, Kopylov DS, Lukashevich ED, Ponomarenko AG, Popov YuA., Rasnitsyn DA, Ryzhkova OV, Sidorchuk EA, Sukatsheva LD and Vorontsov DD (2016) Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins). Cretaceous Research 61: 234–255. https://doi.org/10.1016/j.cretres.2015.12.025.

Scotese C. (2016). A new global temperature curve for the Phanerozoic. GSA Annual Meeting in Denver, Colorado, USA. 74-31 (doi:10.1130/abs/2016AM-287167, 2016).

Seebacher F (2003). Dinosaur body temperatures: the occurrence of endothermy and ectothermy. Paleobiology 29, 105–122

Seymour, RS, Bennett-Stamper CL, Johnston SD, Carrier DR and Grigg GC (2004). Evidence for endothermic ancestors of crocodiles at the stem of archosaur evolution. Physiological and Biochemical Zoology. 77 (6): 1051–1067. PMID 15674775. doi:10.1086/422766

Starck JM, Ricklefs RE (1998) Patterns of Development: The Altricial-Precocial Spectrum, In: Avian Growth and Development. Evolution within the altricial precocial spectrum. J. M. Starck and R. E. Ricklefs (eds). Oxford University Press, New York, 3-30

Uyeda JC, Bone N, McHugh S, Rolland J, Pennell MW (2021). How should functional relationships be evaluated using phylogenetic comparative methods? A case study using metabolic rate and body temperature. Evolution 75(5): 1097–1105.

Uyeda JC, Pennell MW, Miller ET, Maia R, McClain CR (2017). The Evolution of Energetic Scaling across the Vertebrate Tree of Life. American Naturalist 190: 185–199. doi: 10.1086/692326.

Van Rheede T, Bastiaans T, Boone DN, Hedges SB, de Jong WW, Madsen O (2006). The platypus is in its place: Nuclear genes and indels confirm the sister group relation of monotremes and therians. Molecular Biology and Evolution 23: 587–597.

Wiens JJ (2011). The causes of species richness patterns across space, time, and clades and the role of "ecological limits". Quarterly Review of Biology 86: 75–96.

Yamazaki R, Toda H, Libourel P-A, Hayashi Y, Vogt KE, Sakurai T. (2020) Evolutionary Origin of Distinct NREM and REM Sleep. Frontiers in Psychology, December 2020 https://doi.org/10.3389/fpsyg.2020.567618

Zhou CF, Wu S, Martin T, Luo ZX (2013). A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations. Nature 500: 163–167.