Revolutionizing Genomic Instrumentation: Accelerated Base Calling With Deep Learning For Real-Time Precision

Main Article Content

Shaik Jakeer Hussain
Halesh Koti
Maram Ashok
R. Sravanthi
M.Sandhya Rani
Athiraja Atheeswaran
Gunaganti Sravanthi
Rajeswaran Nagalingam

Abstract

As deep learning methods are increasingly used in genomic instruments' basic base calling procedure, their significance in the field of genomics has increased. Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are used in this paradigm shift to decode complex genetic data. The ability of these neural networks to decipher picture and signal data produced by high-tech tools allows for the inference of the complex organization of the 3 billion nucleotide pairs that make up the human genome. The accuracy of sequencing reads is improved, and base naming is made possible more quickly after real-time data production, which has significant implications for genomics. This leads to a dramatic acceleration of the whole genomics workflow, from sample collection to the creation of Variant Call Format (VCF) files and final reports, ushering in a new age of speed and precision in genetic research.

Downloads

Download data is not yet available.

Article Details

How to Cite
Shaik Jakeer Hussain, Halesh Koti, Maram Ashok, R. Sravanthi, M.Sandhya Rani, Athiraja Atheeswaran, Gunaganti Sravanthi, & Rajeswaran Nagalingam. (2023). Revolutionizing Genomic Instrumentation: Accelerated Base Calling With Deep Learning For Real-Time Precision. Journal of Advanced Zoology, 44(S7), 1328–1334. https://doi.org/10.53555/jaz.v44iS7.3193
Section
Articles
Author Biographies

Shaik Jakeer Hussain

Department of CSE (AIML), Institute of Aeronautical Engineering. Dundigal, Hyderabad, Telangana, India.

Halesh Koti

Department of Mechanical Engineering, Malla  Reddy Engineering College, Secunderabad, Telangana State, India.

Maram Ashok

Department of CSE, Malla Reddy Institute of Engineering and Technology, Secunderabad, Telangana State, India.

R. Sravanthi

Department of ECE, Malla Reddy Engineering College, Secunderabad, Telangana State, India.

M.Sandhya Rani

Department of ECE, Malla Reddy College of Engineering, Secunderabad, Telangana State, India.

Athiraja Atheeswaran

Department of CSE (AIML), Bannari Amman Institute of Technology, Erode, Tamilnadu, India.

Gunaganti Sravanthi

Department of CSE, Malla Reddy Institute of Engineering and Technology, Secunderabad, Telangana State, India.

Rajeswaran Nagalingam

Department of ECE, Malla Reddy College of Engineering, Secunderabad, Telangana State, India.

References

Blauwkamp, T. A., Thair, S., Rosen, M. J., Blair, L., Lindner, M. S., Vilfan, I. D., Kawli, T., Christians, F. C., Venkatasubrahmanyam, S., Wall, G. D., Cheung, A., Rogers, Z. N., Meshulam-Simon, G., Huijse, L., Balakrishnan, S., Quinn, J. V., Hollemon, D., Hong, D. K., Vaughn, M. L., … Yang, S. (2019). Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nature Microbiology, 4(4), 663–674. https://doi.org/10.1038/s41564-018-0349-6.

Tafazoli A, Guchelaar H-J, Miltyk W, Kretowski AJ and Swen JJ (2021) Applying Next-Generation Sequencing Platforms for Pharmacogenomic Testing in Clinical Practice. Front. Pharmacol. 12:693453. doi: 10.3389/fphar.2021.693453.

Novakovsky, G., Dexter, N., Libbrecht, M. W., Wasserman, W. W., &Mostafavi, S. (2022). Obtaining genetics insights from deep learning via explainable artificial intelligence. Nature Reviews Genetics, 24(2), 125–137. https://doi.org/10.1038/s41576-022-00532-2.

Novakovsky, G., Fornes, O., Saraswat, M., Mostafavi, S., & Wasserman, W. W. (2023). ExplaiNN: interpretable and transparent neural networks for genomics. Genome Biology, 24(1). https://doi.org/10.1186/s13059-023-02985-y.

Lee, D.-J., Tsai, P.-H., Chen, C.-C., & Dai, Y.-H. (2023). Incorporating knowledge of disease-defining hub genes and regulatory network into a machine learning-based model for predicting treatment response in lupus nephritis after the first renal flare. Journal of Translational Medicine, 21(1). https://doi.org/10.1186/s12967-023-03931-z.

Wysocka, M., Wysocki, O., Zufferey, M., Landers, D., & Freitas, A. (2023). A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data. BMC Bioinformatics, 24(1). https://doi.org/10.1186/s12859-023-05262-8.

de Marvao, A., Dawes, T. J. W., &O’Regan, D. P. (2020). Artificial Intelligence for Cardiac Imaging-Genetics Research. Frontiers in Cardiovascular Medicine, 6. https://doi.org/10.3389/fcvm.2019.00195.

Huang, L., Zhang, H., Li, R., Ge, Y., & Wang, J. (2020). AI Coding: Learning to Construct Error Correction Codes. IEEE Transactions on Communications, 68(1), 26–39. https://doi.org/10.1109/tcomm.2019.2951403.

Teng, S. Y., Yew, G. Y., Sukačová, K., Show, P. L., Máša, V., & Chang, J.-S. (2020). Microalgae with artificial intelligence: A digitalized perspective on genetics, systems and products. Biotechnology Advances, 44, 107631. https://doi.org/10.1016/j.biotechadv.2020.107631.

Han, X., Steven, K., Qassim, A., Marshall, H. N., Bean, C., Tremeer, M., An, J., Siggs, O. M., Gharahkhani, P., Craig, J. E., Hewitt, A. W., Trzaskowski, M., & MacGregor, S. (2021). Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA. The American Journal of Human Genetics, 108(7), 1204–1216. https://doi.org/10.1016/j.ajhg.2021.05.005.

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., … LeVine, R. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921. https://doi.org/10.1038/35057062.

Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 33(8), 831–838. https://doi.org/10.1038/nbt.3300.

Zhou, J., &Troyanskaya, O. G. (2015). Predicting effects of noncoding variants with deep learning–based sequence model. Nature Methods, 12(10), 931–934. https://doi.org/10.1038/nmeth.3547.