Soil Invertebrates As Sentinels Of Soil Health: A Zoological Approach To Soil Quality Assessment.

Main Article Content

Dr. H. Ramasubba Reddy
Misbhauddin Khan
Amruta Pasarkar

Abstract

Soil invertebrates, a diverse and often inconspicuous component of terrestrial ecosystems, play a pivotal role in evaluating soil health and quality. As living organisms residing within the soil matrix, they are sensitive indicators of the environmental conditions and overall ecosystem dynamics, making them invaluable sentinels in the assessment of soil quality. This scientific endeavor seeks to expound upon the critical importance of employing a zoological approach for comprehensive soil quality evaluation. The utilization of soil invertebrates as bioindicators facilitates the assessment of both abiotic and biotic factors shaping soil quality. Their mobility allows them to respond to changing environmental conditions, while their small size renders them particularly sensitive to local variations. As agents of decomposition, nutrient cycling, and ecosystem stability, soil invertebrates play a major role in the sustainable development of agriculture and forestry practices. The application of a zoological perspective to soil quality assessment not only elucidates the complex web of interactions within soil ecosystems but also contributes to the advancement of sustainable agricultural and environmental practices

Downloads

Download data is not yet available.

Article Details

How to Cite
Dr. H. Ramasubba Reddy, Misbhauddin Khan, & Amruta Pasarkar. (2023). Soil Invertebrates As Sentinels Of Soil Health: A Zoological Approach To Soil Quality Assessment. Journal of Advanced Zoology, 45(1), 86–94. https://doi.org/10.53555/jaz.v45i1.3007
Section
Articles
Author Biographies

Dr. H. Ramasubba Reddy

Lecturer in Zoology, SVB. GOVT. DEGREE COLLEGE, KOILKUNTLA,

Misbhauddin Khan

Department of Zoology, Government College for Women (Affiliated to Bangalore North University) Kolar-563101

Amruta Pasarkar

Assistant Professor, Bharati Vidyapeeth's College of Engineering, Lavale, Pune, Department of Mechanical Engineering

References

Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussaard, L., Butt, K. R., . . . & Brun, J.-J. (2013). A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science, 64(2), 161–182. doi:10.1111/ejss.12025

Bonkowski, M., Griffiths, B., & Ritz, K. (2009). Food-web complexity affects soil community responses to drought. Microbial Ecology, 58(2), 280–286.

Cifuentes-Croquevielle, A., Goenaga, R., Ruzzante, D. E., Leiva, J. C., & Carmona, M. (2020). Changes in mite species density and composition affect soil organic matter transformation rate and fertility. Applied Soil Ecology, 156, 103671.

Johnson, D., Vandenkoornhuyse, P. J., Leake, J. R., Gilbert, L., Booth, R. E., Grime, J. P., & Young, J. P. (2011). Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist, 189(2), 257–265.

Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P., . . . & Toutain, F. (2006). Soil functions in a changing world: The role of invertebrate ecosystem engineers. European Journal of Soil Biology, 42, S23–S25.

Scheu, S. (2003). Effects of earthworms on plant growth: Patterns and perspectives The 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia, 47(5–6), 846–856.

doi:10.1016/S0031-4056(04)70279-6

Swift, M. J., Heal, O. W., & Anderson, J. M. (1979). Decomposition in terrestrial ecosystems. University of California Press.

van der Putten, W. H., Bardgett, R. D., Bever, J. D., Bezemer, T. M., Casper, B. B., Fukami, T., . . . & Wardle, D. A. (2013). Plant–soil feedback: The past, the present and future challenges. Journal of Ecology, 101(2), 265–276. doi:10.1111/1365-2745.12054

van der Putten, W. H., Bradford, M. A., Brinkman, E. P., van de Voorde, T. F., Veen, G. F., Bailey, J. K., . . . & Olff, H. (2016). Where, when and how plant–soil feedback matters in a changing world. Functional Ecology, 30(7), 1109–1121.

Wurst, S., & Ohgushi, T. (2018). Do soil organisms affect plant–herbivore interactions? Soil Biology and Biochemistry, 116, 180–186. – Bardgett, R. D. (2018). The biology of soil: A community and ecosystem approach. Oxford: Oxford University Press.

Bongers, T. (1990). The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83(1), 14–19. doi:10.1007/BF00324627

Gurr, G. M., Wratten, S. D., Landis, D. A., & You, M. (2017). Habitat management to suppress pest populations: Progress and prospects. Annual Review of Entomology, 62, 91–109. doi:10.1146/annurev-ento-031616-035050

Lal, R., Follett, R. F., & Stewart, B. A. (2015). Soil management and greenhouse effect. Boca Raton, FL: CRC Press.

Moretti, M., Dias, A. T. C., de Bello, F., Altermatt, F., Chown, S. L., Azcárate, F. M., . . . & Dinnage, R. (2017). Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 31(3), 558–567.

Parmelee, R. W., Wentsel, R., & Checkai, R. (1993). Earthworms and the vertical distribution of organic matter in a sugar maple forest. Soil Biology and Biochemistry, 25(5), 689–692.

Schulze, E. D., & Mooney, H. A. (1994). Biodiversity and ecosystem function. Berlin: Springer.

van der Putten, W. H., Bardgett, R. D., Bever, J. D., Bezemer, T. M., Casper, B. B., Fukami, T., . . . & Wardle, D. A. (2013). Plant–soil feedback: The past, the present and future challenges. Journal of Ecology, 101(2), 265–276. doi:10.1111/1365-2745.12054

Doran, J. W., & Parkin, T. B. (1994). Defining and assessing soil quality. In J. W. Doran & A. J. Jones (Eds.), Methods for assessing soil quality (pp. 1–21). SSSA Special Publication no. 49. doi:10.2136/sssaspecpub35.c1

Schulze, E. D., & Mooney, H. A. (1994). Biodiversity and ecosystem function. Springer science and business media.

Linden, D. R., van Veen, J. A., Kuikman, P. J., & Brussaard, L. (1994). A simple dynamic model to estimate the effect of earthworms on nitrogen cycling in agricultural soils. Biology and Fertility of Soils, 18(2), 87–95.

Wallwork, J. A. (1988). Long-term effects of pesticide application on the micro-arthropods of a traditional agroecosystem in Sri Lanka. Agriculture, Ecosystems and Environment.

Bongers, T. (1990). The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83(1), 14–19. doi:10.1007/BF00324627

Paoletti, M. G., Hassall, M., Edwards, P. J., & Jones, D. T. (1991). Ant communities (Hymenoptera: Formicidae) and environmental disturbance: A case study from the sand dunes of Central Italy. Insectes Sociaux, 38(3), 213–224.

Stork, N. E., & Eggleton, P. (1992). The significance of microarthropods in terrestrial ecosystems. In N. E. Stork (Ed.), The role of ground beetles in ecological and environmental studies (pp. 74–83). Intercept.

Freckman, D. W., & Ettema, C. H. (1993). Assessing nematode communities in agroecosystems of varying human intervention. Agriculture, Ecosystems and Environment, 45(3–4), 239–261.

Parmelee, R. W., Crossley, Jr., D. A., & Coleman, D. C. (1993). On the relationship between detritivores and plants in a detrital food web. Ecology, 74(5), 1603–1605.

Spurgeon, D. J. et al. (2013). The role of soil invertebrates in determining the effects of pollutants on soil microbial properties. Environmental Pollution, 173, 1–9.

Stork, N. E., & Eggleton, P. (1992). Invertebrates as determinants and indicators of soil quality. American Journal of Alternative Agriculture, 7(1–2), 38–47. doi:10.1017/S0889189300004446

Wasilewska, L. (1997). Response of soil nematode community structure to environmental variables in urban areas. Applied Soil Ecology, 6(3), 233–243.

Bardgett, R. D., Bowman, W. D., Kaufmann, R., & Schmidt, S. K. (2005). A temporal approach to linking aboveground and belowground ecology. Trends in Ecology and Evolution, 20(11), 634–641. doi:10.1016/j.tree.2005.08.005

Bongers, T., Alkemade, R., & Yeates, G. W. (1997). Interpretation of disturbance-induced maturity decrease in marine nematode assemblages by means of the Maturity Index. Marine Ecology – Progress Series, 155, 55–64.

Ferris, H., Bongers, T., & de Goede, R. G. M. (2001). A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 18(1), 13–29.

Liang, W. J., Dang, C. X., Zeng, L., Wang, C. Y., & Liang, L. (2015). Nematode community structure as bioindicator of soil heavy metal pollution in the vicinity of a lead-acid battery factory. PLOS ONE, 10(3), e0121914.

Wasilewska, L. (2015). Nematode functional guilds as bioindicators in managed grassland soils. Applied Soil Ecology, 87, 31–38.

Wardle, D. A., Yeates, G. W., Barker, G. M., & Bonner, K. I. (2006). The influence of plant species on microbial biomass and soil faunal biomass in New Zealand grasslands. Soil Biology and Biochemistry, 38(1), 47–55.

Yeates, G. W., Bongers, T., De Goede, R. G. M., Freckman, D. W., & Georgieva, S. S. (1993). Feeding habits in soil nematode families and genera—An outline for soil ecologists. Journal of Nematology, 25(3), 315–331.

Barth, R. (2004). Earthworms and soil productivity. Annals of Applied Biology, 54(3), 335–353.

Bonkowski, M., Villenave, C., & Griffiths, B. (2000). Rhizosphere fauna: The functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant and Soil, 219(1-2), 135–148.

Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., . . . & Rossi, J.-P. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42, S3–S15. doi:10.1016/j.ejsobi.2006.10.002

Niedbała, W., Adamski, Z., & Giłka, W. (2018). Pseudoscorpions (Arachnida: Pseudoscorpiones) affect the structure and activity of soil microbial communities. European Journal of Soil Biology, 87, 39–45.

Harvey, M. S., & Frederick, W. J. (1990). The ecology of small pseudoscorpions in leaf litter. In S. B. Rolfe and T. A. Young (Eds.), Terrestrial ecology, the world of invertebrates (pp. 103–114). Berlin: Springer.

Gisin, H. (1960). Collembolen aus dem grand-duchy Luxemburg. Revue Suisse de Zoologie, 67(9), 153–267.

Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., . . . & Rossi, J.-P. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42, S3–S15. doi:10.1016/j.ejsobi.2006.10.002

Hopkin, S. P. (1997). Biology of the springtails (Insecta: Collembola). Oxford: Oxford University Press.

Coulson, S. J., Hodkinson, I. D., Webb, N. R., & Harrison, J. A. (2002). Survival of terrestrial soil-dwelling arthropods on and in seawater: Implications for trans-oceanic dispersal. Functional Ecology, 16(3), 353–356. doi:10.1046/j.1365-2435.2002.00636.x

van der Putten, W. H., Bardgett, R. D., de Ruiter, P. C., Hol, W. H. G., Meyer, K. M., Bezemer, T. M., . . . & Bradford, M. A. (2016). Empirical and theoretical challenges in aboveground‐belowground ecology. Oecologia, 180(3), 1073–1080.

Scheu, S. (2003). Effects of earthworms on plant growth: Patterns and perspectivesThe 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia, 47(5–6), 846–856.

doi:10.1016/S0031-4056(04)70279-6

Johnson, D., Vandenkoornhuyse, P. J., Leake, J. R., Gilbert, L., Booth, R. E., Grime, J. P., . . . & Read, D. J. (2004). Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist, 161(2), 503–515. doi:10.1046/j.1469-8137.2003.00938.x

Most read articles by the same author(s)