Protein Content of Sea Urchins (Tripneustes Gratilla) and The Potential of Its Shell as An Antibacterial

Main Article Content

Martha Kaihena
Deford C Birahy
Maria Nindatu
Bustomi
Richard A Matulessy

Abstract

Sea urchins are often used as a food ingredient by taking their gonads. Sea urchins are also a potential fishery resource that greatly benefits human life. The study aimed to determine the gonad protein levels of sea urchins (Tripneustes gratilla) in different aquatic environments. The variables observed in this study were sea urchin gonadal index, gonadal index, protein content analysis, and antibacterial sea urchin shell methanol extract against E. coli, Salmonella sp., and S. aureus. The results showed that the average gonadal index for sea urchins (Tripneustes gratilla) on these two substrates was still relatively low, 1.46 for sandy substrates and 1.72 for rocky substrates. The gonad protein content of sea urchins can be seen on a sandy substrate and overgrown with seagrass. The average percentage of gonad protein content in sea urchins is 17.3%, while on a rocky substrate, the average percentage of protein content is 16.5%. The results of the T-test showed that the average results for the gonad protein content of sea urchins on these two substrates were not significantly different. Concluded that the gonad protein content of rocky sea urchins had a higher value of 17.3 with a gonadal index of 1.72 compared to the sandy substrate with a gonadal protein content of 16.5 with a gonadal index of 1.46. The highest content of essential amino acids in rocky locations was found in the type of amino acid leucine, with a concentration value of 8.59. Antibacterial methanol extract of Tripneustes gratilla sea urchin shell against E. coli, salmonella sp., and S. aureus showed the diameter of the inhibition zone formed on the agar media; in this case, the bacterial inactivation unit ranged from 1.84 mm/g – 2.65 mm/g.

Downloads

Download data is not yet available.

Article Details

How to Cite
Martha Kaihena, Deford C Birahy, Maria Nindatu, Bustomi, & Richard A Matulessy. (2023). Protein Content of Sea Urchins (Tripneustes Gratilla) and The Potential of Its Shell as An Antibacterial. Journal of Advanced Zoology, 44(5), 385–393. https://doi.org/10.53555/jaz.v44i5.2896
Section
Articles
Author Biographies

Martha Kaihena

Biology Study Program, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon 97233, Maluku, Indonesia. 

Deford C Birahy

Biotechnology Study Program, IPB University, Bogor 16680, West Java, Indonesia.

Maria Nindatu

Biology Study Program, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon 97233, Maluku, Indonesia.

Bustomi

Biotechnology Study Program, IPB University, Bogor 16680, West Java, Indonesia.

Richard A Matulessy

Geology Study Program, Faculty of Engineering, Pattimura University, Ambon 97233, Maluku, Indonesia.

References

Ananieva EA, Powell JD, Hutson SM. 2016. Leucine metabolism in T cell activation: mTOR signaling and beyond. Advances in nutrition 7(4):798S-805S. DOI: https://doi.org/10.3945/an.115.011221

André R, Pacheco R, Bourbon M, Serralheiro ML. 2021. Brown algae potential as a functional food against hypercholesterolemia. Foods 10(2):234. https://doi.org/10.3390/foods10020234

Archana A, Babu KR. 2016. Nutrient composition and antioxidant activity of gonads of sea urchin Stomopneustes variolaris. Food chemistry 197:597-602. DOI: https://doi.org/10.1016/j.foodchem.2015.11.003

Banudi L, Koro S, Anasiru MA, Nurmiaty N. 2021. The Effect of the Provision of Bagea Enriched with Sea Urchin Gonads on Weight Gain in Toddlers of the Bajo Ethnic. Indonesian Journal of Public Health Nutrition 2(1):44-52. DOI: https://doi.org/10.7454/ijphn.v2i1.5343

Brink M. 2020. Genetic studies for sustainable aquaculture of the sea urchin, Tripneustes gratilla. [Dissertation]. Stellenbosch Central, Stellenbosch University. [South Africa]

Challener RC. 2013. An investigation of the sublethal effects of carbon dioxide on the common sea urchin Lytechinus variegatus and of the carbonate chemistry of its nearshore habitat. The University of Alabama at Birmingham

Chen YC, Hwang DF. 2014. Evaluation of antioxidant properties and biofunctions of polar, nonpolar, and water-soluble fractions extracted from gonad and body wall of the sea urchin Tripneustes gratilla. Fisheries science 80:1311-1321. DOI: https://doi.org/10.1007/s12562-014-0808-9

Clark AM, Rowe FWE. 1971. Monograph of Shallow Water Indo West Pacific Echinoderms. Brithis Museum, London.

Dinh TKH, Nguyen PH, Phuong DL, Dang TPL, Quan PM, Dao TKD, Long PQ. 2023. Component and Content of Lipid Classes and Phospholipid Molecular Species of Eggs and Body of the Vietnamese Sea Urchin Tripneustes gratilla. Molecules 28(9):3721. DOI: https://doi.org/10.3390/molecules28093721

Ditzel P, König S, Musembi P, Peters MK. 2022. Correlation between coral reef condition and the diversity and abundance of fishes and sea urchins on an East African coral reef. In Oceans 3(1):1-14. DOI: https://doi.org/10.3390/oceans3010001

Gheorghita D, Grosu E, Robu A, Ditu LM, Deleanu IM, Gradisteanu Pircalabioru G, Antoniac VI. 2022. EsseNtial oils as antimicrobial active substances in wound dressings. Materials 15(19):6923. DOI: https://doi.org/10.3390/ma15196923

Hou Y, Carne A, McConnell M, Mros S, Vasileva EA, Mishchenko NP, Bekhit AEDA. 2020. PHNQ from Evechinus chloroticus Sea Urchin Supplemented with Calcium Promotes Mineralization in Saos-2 Human Bone Cell Line. Marine Drugs 18(7):373. https://doi.org/10.3390/md18070373

Johnstone CR. 2015. Investigation of coelomic fluid from the sea urchin E. chloroticus. [Dissertation]. University of Otago, 362 Leith Street. [New Zealand]

Karnila R, Iriani D, Shaarani SM, Yunus AA, Salma R. 2022. Nutritional characteristics of sea urchin (Diadema setosum) in Bungus, West Sumatera Province. In IOP Conference Series: Earth and Environmental Science 1118(1):012037.

DOI: https://doi.org/10.1088/1755-1315/1118/1/012037

Khanna DR. 2005. Biology of Echinodermata. Discovery Publishing House.

Kannah RY, Kavitha S, Gunasekaran M, Kumar G, Banu JR, Zhen G. 2020. Biohydrogen production from seagrass via novel energetically efficient ozone coupled rotor stator homogenization. International Journal of Hydrogen Energy 45(10):5881-5889. DOI: https://doi.org/10.1016/j.ijhydene.2019.04.151

Kresnamurti A, Budiarti F. 2021. The Effectiveness of Sea Urchin Extract (Echinometra matthaei) for Wound Healing on Deep Second-Degree in White Rats (Rattus norvegicus) Wistar. Journal of Tropical Pharmacy and Chemistry 5(3):194-202. DOI: https://doi.org/10.25026/jtpc.v5i3.281

Kumar S, Sahoo D, Levine I. 2015. Assessment of nutritional value in a brown seaweed Sargassum wightii and their seasonal variations. Algal Research 9:117-125. DOI: https://doi.org/10.1016/j.algal.2015.02.024

Kumar S, Sahoo D. 2017. A comprehensive analysis of alginate content and biochemical composition of leftover pulp from brown seaweed Sargassum wightii. Algal research 23:233-239. DOI: https://doi.org/10.1016/j.algal.2017.02.003

Lekatompessy VC, Marhendra APW, Kurniawan N. 2023. Accumulation of Microplastics in the Digestive Tract and Gonads and its Effects on Gonad Quality of Sea Urchins Tripneustes gratilla. Biotropika: Journal of Tropical Biology 11(1):53-63. DOI: https://doi.org/10.21776/ub.biotropika.2023.011.01.07

Li Y, Zheng Y, Zhang Y, Yang Y, Wang P, Imre B, Wang D. 2021. Brown algae carbohydrates: Structures, pharmaceutical properties, and research challenges. Marine Drugs 19(11):620. DOI: https://doi.org/10.3390/md19110620

Salazar A. 2018. Advanced Chordate Zoology. Scientific e-Resources.

Morais T, Inácio A, Coutinho T, Ministro M, Cotas J, Pereira L, Bahcevandziev K. 2020. Seaweed potential in the animal feed: A review. Journal of Marine Science and Engineering 8(8):559. DOI: https://doi.org/10.3390/jmse8080559

Nagarajan D, Varjani S, Lee DJ, Chang JS. 2021. Sustainable aquaculture and animal feed from microalgae–nutritive value and techno-functional components. Renewable and Sustainable Energy Reviews 150:111549. DOI: https://doi.org/10.1016/j.rser.2021.111549

Piryaei F, Ghavam Mostafavi P, Shahbazzadeh D, Pooshang Bagheri K. 2018. Description on anatomy and histology of Echinometra mathaei (Echinoidea: Camarodonta: Echinometidae), the Persian Gulf sea urchin. Sustainable Aquaculture and Health Management Journal 4(2):1-27. DOI: https://doi.org/10.29252/ijaah.4.2.1

Rengasamy RRK, Radjassegarin A, Perumal A. 2013. Seagrasses as potential source of medicinal food ingredients: Nutritional analysis and multivariate approach. Biomedicine & Preventive Nutrition 3(4):375-380. DOI: https://doi.org/10.1016/j.bionut.2013.06.011

Rocha F, Baião LF, Moutinho S, Reis B, Oliveira A, Arenas F, Valente LM. 2019. The effect of sex, season and gametogenic cycle on gonad yield, biochemical composition and quality traits of Paracentrotus lividus along the North Atlantic coast of Portugal. Scientific Reports 9(1):2994. DOI: https://doi.org/10.1038/s41598-019-39912-w

Silahooy V, Tohal AH, Hakim IL, Silahooy WI. 2013. Spatial distribution of Tripneustes gratilla on Ambon Island. The Journal of Tropical Science 3(3): 177-181. DOI: https://doi.org/10.11594/jtls.03.03.06

Sun J, Chiang FS. 2015. Use and exploitation of sea urchins. Echinoderm aquaculture, 25-45.

Suryanti, A'in C. 2013. Differences in the abundance of sea urchins (sea urchin) on different substrates in Legon Boyo Karimunjawa Jepara: Proceeding SEMNAS III Fishery and Marine Products FPIK. Diponegoro University, Semarang, 02 November 2013. [Indonesian].

Tremellen K. 2016. Gut Endotoxin Leading to a Decline IN Gonadal function (GELDING)-a novel theory for the development of late onset hypogonadism in obese men. Basic and Clinical Andrology 26:1-13. DOI: https://doi.org/10.1186/s12610-016-0034-7

Vaitillingon D, Solofonirina R, Jangoux M. 2005. Reprodutive cycle of edible ecinoderms from the southwestern indian ocean Tripneustes gratila L. (Ehinoidea, Echinodermata). Western Indian Ocean J, Mar, Sci 4(1): 47-6. DOI: https://doi.org/10.4314/wiojms.v4i1.28473