A Review on Bacteriophage Mediated Control of Phytopathogenic Bacteria for Plant Protection

Main Article Content

Makari Hanumanthappa K
Shyni Teresa
Gopinath S M
Rashmi T S

Abstract

Bacteriophage therapy entails the application of bacteriophage viruses for the remedy of bacterial infections, a practice that has persisted for well over a century. Despite its enduring presence, the implementation of this therapeutic approach has faced persistent challenges, even though it has garnered support for over 25 years from microbiologists and physicians who perceive it as propitious remedy in the context of the escalating threat posed by anti-microbial resistance (AMR). The underlying justifications for these ongoing challenges are intricate in nature. This article aims to delve into the impact of bacteriophages on phytopathogens in the realm of plant biology. It endeavors to elucidate how bacteriophages function as potent antimicrobial agents in the management of bacterial infections afflicting plants, highlighting their reliability in comparison to synthetic antibiotics employed to mitigate such infections. It is worth noting that synthetic antibiotics occasionally falter in their efforts to curb or eradicate disease-causing bacteria. These microorganisms often exhibit a vigorous opposition to microbicides and various antibiotic drugs. Some bacteria even display resistance to colistin, rendering them multi-drug resistant (MDR), extensively drug-resistant (XDR), or even pan-drug resistant (PDR). In the relentless battle against these formidable bacterial foes, bacteriophage therapy emerges as a beacon of hope, offering promising results in the eradication of phytopathogenic bacteria and the suppression of further bacterial infections. This innovative phage therapy represents a significant milestone in the field of microbiology

Downloads

Download data is not yet available.

Article Details

How to Cite
Makari Hanumanthappa K, Shyni Teresa, Gopinath S M, & Rashmi T S. (2022). A Review on Bacteriophage Mediated Control of Phytopathogenic Bacteria for Plant Protection. Journal of Advanced Zoology, 43(1), 164–182. https://doi.org/10.53555/jaz.v43i1.2871
Section
Articles
Author Biographies

Makari Hanumanthappa K

Department of Biotechnology, I.D.S.G Government College, Chikkamagaluru – 577102, Karnataka, India

Shyni Teresa

Department of Biotechnology, I.D.S.G Government College, Chikkamagaluru – 577102, Karnataka, India

Gopinath S M

Department of studies and Research in Biotechnology, Davanagere University, Davanagere -577002, Karnataka

Rashmi T S

Department of Biotechnology, Government Science College, Chitradurga – 577501, Karnataka, India

References

S.M. Mousavi, S. Babakhani, L. Moradi, S. Karami, M. Shahbandeh, M. Mirshekar, S. Mohebi, M.T. Moghadam, Bacteriophage as a Novel Therapeutic Weapon for Killing Colistin-Resistant Multi-Drug-Resistant and Extensively Drug-Resistant Gram-Negative Bacteria, Current Microbiology, 78 (2021) 4023-4036.

C. Sieiro, L. Areal-Hermida, Á. Pichardo-Gallardo, R. Almuiña-González, T. de Miguel, S. Sánchez, Á. Sánchez-Pérez, T.G. Villa, A Hundred Years of Bacteriophages: Can Phages Replace Antibiotics in Agriculture and Aquaculture?, Antibiotics, 9 (2020) 493.

A. Pirisi, Phage therapy—advantages over antibiotics?, The Lancet, 356 (2000) 1418.

C. Brives, J. Pourraz, Phage therapy as a potential solution in the fight against AMR: obstacles and possible futures, Palgrave Communications, 6 (2020) 100.

C. Buttimer, O. McAuliffe, R.P. Ross, C. Hill, J. O’Mahony, A. Coffey, Bacteriophages and Bacterial Plant Diseases, Frontiers in Microbiology, 8 (2017).

P. Domingo-Calap, J. Delgado-Martínez, Bacteriophages: Protagonists of a Post-Antibiotic Era, Antibiotics, 7 (2018) 66.

M.R.J. Clokie, A.D. Millard, A.V. Letarov, S. Heaphy, Phages in nature, Bacteriophage, 1 (2011) 31-45.

R. Young, Phage lysis: do we have the hole story yet?, Current Opinion in Microbiology, 16 (2013) 790-797.

M.G. Weinbauer, Ecology of prokaryotic viruses, FEMS Microbiology Reviews, 28 (2004) 127-181.

G.P.C. Salmond, P.C. Fineran, A century of the phage: past, present and future, Nature Reviews Microbiology, 13 (2015) 777-786.

N. Principi, E. Silvestri, S. Esposito, Advantages and Limitations of Bacteriophages for the Treatment of Bacterial Infections, Frontiers in Pharmacology, 10 (2019).

H.-W. Ackermann, Phage Classification and Characterization, in: M.R.J. Clokie, A.M. Kropinski (Eds.) Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions, Humana Press, Totowa, NJ, 2009, pp. 127-140.

S.T. Bruckbauer, J.D. Trimarco, J. Martin, B. Bushnell, K.A. Senn, W. Schackwitz, A. Lipzen, M. Blow, E.A. Wood, W.S. Culberson, C. Pennacchio, M.M. Cox, Experimental Evolution of Extreme Resistance to Ionizing Radiation in Escherichia coli after 50 Cycles of Selection, Journal of Bacteriology, 201 (2019) 10.1128/jb.00784-00718.

P. Hyman, S.T. Abedon, Bacteriophage (overview), in: M. Schaechter (Ed.) Encyclopedia of Microbiology (Third Edition), Academic Press, Oxford, 2009, pp. 322-338.

S.R. Casjens, Diversity among the tailed-bacteriophages that infect the Enterobacteriaceae, Research in Microbiology, 159 (2008) 340-348.

S. Hagens, M.J. Loessner, Application of bacteriophages for detection and control of foodborne pathogens, Applied Microbiology and Biotechnology, 76 (2007) 513-519.

S. Moineau, Bacteriophage, in: S. Maloy, K. Hughes (Eds.) Brenner's Encyclopedia of Genetics (Second Edition), Academic Press, San Diego, 2013, pp. 280-283.

A. Leprince, J. Mahillon, Phage Adsorption to Gram-Positive Bacteria, Viruses, 15 (2023) 196.

K. Bhargava, G. Nath, A. Bhargava, G.K. Aseri, N. Jain, Phage therapeutics: from promises to practices and prospectives, Applied Microbiology and Biotechnology, 105 (2021) 9047-9067.

M.L. Yap, M.G. Rossmann, Structure and function of bacteriophage T4, Future Microbiology, 9 (2014) 1319-1327.

A.A. Aksyuk, P.G. Leiman, L.P. Kurochkina, M.M. Shneider, V.A. Kostyuchenko, V.V. Mesyanzhinov, M.G. Rossmann, The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria, The EMBO Journal, 28 (2009) 821-829.

R. Linares, C.-A. Arnaud, S. Degroux, G. Schoehn, C. Breyton, Structure, function and assembly of the long, flexible tail of siphophages, Current Opinion in Virology, 45 (2020) 34-42.

J.E. Egido, A.R. Costa, C. Aparicio-Maldonado, P.-J. Haas, S.J.J. Brouns, Mechanisms and clinical importance of bacteriophage resistance, FEMS Microbiology Reviews, 46 (2021).

A. Sulakvelidze, Z. Alavidze, J.G. Morris, Bacteriophage Therapy, Antimicrobial Agents and Chemotherapy, 45 (2001) 649-659.

A.P. KRUEGER, E.J. SCRIBNER, THE BACTERIOPHAGE: ITS NATURE AND ITS THERAPEUTIC USE, Journal of the American Medical Association, 116 (1941) 2160-2167.

E. Kutter, Bacteriophages, in: S. Brenner, J.H. Miller (Eds.) Encyclopedia of Genetics, Academic Press, New York, 2001, pp. 179-186.

A. Jurczak-Kurek, T. Gąsior, B. Nejman-Faleńczyk, S. Bloch, A. Dydecka, G. Topka, A. Necel, M. Jakubowska-Deredas, M. Narajczyk, M. Richert, A. Mieszkowska, B. Wróbel, G. Węgrzyn, A. Węgrzyn, Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage, Scientific Reports, 6 (2016) 34338.

A. Du Toit, The language of phages, Nature Reviews Microbiology, 15 (2017) 135-135.

K.H. Cheong, T. Wen, S. Benler, J.M. Koh, E.V. Koonin, Alternating lysis and lysogeny is a winning strategy in bacteriophages due to Parrondo's paradox, Proceedings of the National Academy of Sciences, 119 (2022) e2115145119.

D. Endy, D. Kong, J. Yin, Intracellular kinetics of a growing virus: A genetically structured simulation for bacteriophage T7, Biotechnology and Bioengineering, 55 (1997) 375-389.

S.T. Abedon, Selection for bacteriophage latent period length by bacterial density: A theoretical examination, Microbial Ecology, 18 (1989) 79-88.

A.H. Doermann THE INTRACELLULAR GROWTH OF BACTERIOPHAGES : I. LIBERATION OF INTRACELLULAR BACTERIOPHAGE T4 BY PREMATURE LYSIS WITH ANOTHER PHAGE OR WITH CYANIDE, Journal of General Physiology, 35 (1952) 645-656.

E.J. Mendoza, K. Manguiat, H. Wood, M. Drebot, Two Detailed Plaque Assay Protocols for the Quantification of Infectious SARS-CoV-2, Current Protocols in Microbiology, 57 (2020) cpmc105.

A. Au - Baer, K. Au - Kehn-Hall, Viral Concentration Determination Through Plaque Assays: Using Traditional and Novel Overlay Systems, JoVE, (2014) e52065.

C. Howard-Varona, K.R. Hargreaves, S.T. Abedon, M.B. Sullivan, Lysogeny in nature: mechanisms, impact and ecology of temperate phages, The ISME Journal, 11 (2017) 1511-1520.

A.S.f. Microbiology, S.o.A. Bacteriologists, Bacteriological Reviews, American Society for Microbiology, 1943.

O. McAuliffe, Bacteriophage: Biological Aspects and Diversity☆, in: P.L.H. McSweeney, J.P. McNamara (Eds.) Encyclopedia of Dairy Sciences (Third Edition), Academic Press, Oxford, 2022, pp. 65-79.

X. Yin, G. Stotzky, Gene Transfer Among Bacteria in Natural Environments, in: S.L. Neidleman, A.I. Laskin (Eds.) Advances in Applied Microbiology, Academic Press, 1997, pp. 153-212.

M. Zhang, T. Zhang, M. Yu, Y.-L. Chen, M. Jin, The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications, Viruses, 14 (2022) 1904.

M. Pedersen, J.T. Neergaard, J. Cassias, K.K. Rasmussen, L. Lo Leggio, K. Sneppen, K. Hammer, M. Kilstrup, Repression of the lysogenic PR promoter in bacteriophage TP901-1 through binding of a CI-MOR complex to a composite OM-OR operator, Scientific Reports, 10 (2020) 8659.

J. Doss, K. Culbertson, D. Hahn, J. Camacho, N. Barekzi, A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms, Viruses, 9 (2017) 50.

J. Davison, Genetic Exchange between Bacteria in the Environment, Plasmid, 42 (1999) 73-91.

J.M. Campos, J. Geisselsoder, D.R. Zusman, Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus, Journal of Molecular Biology, 119 (1978) 167-178.

P. Hyman, Phages for phage therapy: isolation, characterization, and host range breadth, Pharmaceuticals, 12 (2019) 35.

P. Alexyuk, A. Bogoyavlenskiy, M. Alexyuk, K. Akanova, Y. Moldakhanov, V. Berezin, Isolation and Characterization of Lytic Bacteriophages Active against Clinical Strains of E. coli and Development of a Phage Antimicrobial Cocktail, Viruses, 14 (2022) 2381.

R. García, S. Latz, J. Romero, G. Higuera, K. García, R. Bastías, Bacteriophage Production Models: An Overview, Frontiers in Microbiology, 10 (2019).

J. João, J. Lampreia, D.M.F. Prazeres, A.M. Azevedo, Manufacturing of bacteriophages for therapeutic applications, Biotechnology Advances, 49 (2021) 107758.

S.G. Kim, J. Kwon, S.S. Giri, S. Yun, H.J. Kim, S.W. Kim, J.W. Kang, S.B. Lee, W.J. Jung, S.C. Park, Strategy for mass production of lytic Staphylococcus aureus bacteriophage pSa-3: contribution of multiplicity of infection and response surface methodology, Microbial Cell Factories, 20 (2021) 56.

J. Ali, Q. Rafiq, E. Ratcliffe, A scaled-down model for the translation of bacteriophage culture to manufacturing scale, Biotechnology and Bioengineering, 116 (2019) 972-984.

Y. Xiao, P. Huang, Z. Huang, K. Yu, Y. Song, N. Guo, H. Dai, M. Jiang, Y. Xu, D. Wang, Q. Wei, Influencing factors on the preservation of lytic bacteriophage VP3, Biosafety and Health, 4 (2022) 314-320.

W.A. Clark, Comparison of Several Methods for Preserving Bacteriophages, Applied Microbiology, 10 (1962) 466-471.

M.B. Łobocka, A. Głowacka, P. Golec, Methods for Bacteriophage Preservation, in: J. Azeredo, S. Sillankorva (Eds.) Bacteriophage Therapy: From Lab to Clinical Practice, Springer New York, New York, NY, 2018, pp. 219-230.

M.E. Burns, Cryobiology as viewed by the microbiologist, Cryobiology, 1 (1964) 18-39.

W.C. Summers, The strange history of phage therapy, Bacteriophage, 2 (2012) 130-133.

N. Chanishvili, Chapter 1 - Phage Therapy—History from Twort and d'Herelle Through Soviet Experience to Current Approaches, in: M. Łobocka, W. Szybalski (Eds.) Advances in Virus Research, Academic Press, 2012, pp. 3-40.

X. Wittebole, S. De Roock, S.M. Opal, A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens, Virulence, 5 (2014) 226-235.

A.V. Letarov, History of Early Bacteriophage Research and Emergence of Key Concepts in Virology, Biochemistry (Moscow), 85 (2020) 1093-1112.

S.T. Abedon, K.M. Danis-Wlodarczyk, D.J. Wozniak, Phage cocktail development for bacteriophage therapy: Toward improving spectrum of activity breadth and depth, Pharmaceuticals, 14 (2021) 1019.

C. Li, T. Shi, Y. Sun, Y. Zhang, A Novel Method to Create Efficient Phage Cocktails via Use of Phage-Resistant Bacteria, Applied and Environmental Microbiology, 88 (2022) e02323-02321.

J. Gu, X. Liu, Y. Li, W. Han, L. Lei, Y. Yang, H. Zhao, Y. Gao, J. Song, R. Lu, C. Sun, X. Feng, A Method for Generation Phage Cocktail with Great Therapeutic Potential, PLOS ONE, 7 (2012) e31698.

T. Stonier, J. McSharry, T. Speitel, Agrobacterium tumefaciens Conn IV. Bacteriophage PB21 and Its Inhibitory Effect on Tumor Induction, Journal of Virology, 1 (1967) 268-273.

R.E. Beardsley, Glycine resistance in Agrobacterium tumefaciens, Journal of Bacteriology, 83 (1962) 6-13.

P.A. Benjama, M. El Gadda, E. El Boustani, C. El Modafar, X. Nesme, J. Cubero, Détection moléculaire spécifique de la région vir du plasmide pTi d’Agrobacterium tumefaciens dans les sols et plants au Maroc, EPPO Bulletin, 34 (2004) 403-406.

R.E. Beardsley, LYSOGENICITY IN AGROBACTERIUM TUMEFACIENS, Journal of Bacteriology, 80 (1960) 180-187.

H.S. Addy, A.A. Ahmad, Q. Huang, Molecular and biological characterization of Ralstonia phage RsoM1USA, a new species of P2virus, isolated in the United States, Frontiers in microbiology, 10 (2019) 267.

B. Álvarez, M.M. López, E.G. Biosca, Biocontrol of the Major Plant Pathogen Ralstonia solanacearum in Irrigation Water and Host Plants by Novel Waterborne Lytic Bacteriophages, Frontiers in Microbiology, 10 (2019).

B. Álvarez, M.M. López, E.G. Biosca, Influence of Native Microbiota on Survival of Ralstonia solanacearum Phylotype II in River Water Microcosms, Applied and Environmental Microbiology, 73 (2007) 7210-7217.

M. Poueymiro, S. Genin, Secreted proteins from Ralstonia solanacearum: a hundred tricks to kill a plant, Current Opinion in Microbiology, 12 (2009) 44-52.

B. Anderson, M.H. Rashid, C. Carter, G. Pasternack, C. Rajanna, T. Revazishvili, T. Dean, A. Senecal, A. Sulakvelidze, Enumeration of bacteriophage particles, Bacteriophage, 1 (2011) 86-93.

E. Adriaenssens, J.R. Brister, How to Name and Classify Your Phage: An Informal Guide, Viruses, 9 (2017) 70.

A.S. Abdelrhim, A.A. Ahmad, M.O.A. Omar, A.M.M. Hammad, Q. Huang, A new Streptomyces scabies-infecting bacteriophage from Egypt with promising biocontrol traits, Archives of Microbiology, 203 (2021) 4233-4242.

J. Park, B. Kim, S. Song, Y.W. Lee, E. Roh, Isolation of Nine Bacteriophages Shown Effective against Erwinia amylovora in Korea, Plant Pathol J, 38 (2022) 248-253.

S. Bereswill, A. Pahl, P. Bellemann, W. Zeller, K. Geider, Sensitive and species-specific detection of Erwinia amylovora by polymerase chain reaction analysis, Applied and Environmental Microbiology, 58 (1992) 3522-3526.

S.G. Aćimović, Q. Zeng, G.C. McGhee, G.W. Sundin, J.C. Wise, Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes, Frontiers in Plant Science, 6 (2015).

C. Buttimer, Y. Born, A. Lucid, M.J. Loessner, L. Fieseler, A. Coffey, Erwinia amylovora phage vB_EamM_Y3 represents another lineage of hairy Myoviridae, Research in Microbiology, 169 (2018) 505-514.

Y.-B. Yun, Y. Um, Y.-K. Kim, Optimization of the Bacteriophage Cocktail for the Prevention of Brown Blotch Disease Caused by Pseudomonas tolaasii, Plant Pathol J, 38 (2022) 472-481.

Y. Yeong-Bae, H. Ji-Hye, Characterization of phage-resistant strains derived from Pseudomonas tolaasii 6264, which causes brown blotch disease, J. Microbiol. Biotechnol., 28 (2018) 2064-2070.

H.T.D. Nguyen, S. Yoon, M.-H. Kim, Y.-K. Kim, M.-Y. Yoon, Y.-H. Cho, Y. Lim, S.H. Shin, D.-E. Kim, Characterization of bacteriophage ϕPto-bp6g, a novel phage that lyses Pseudomonas tolaasii causing brown blotch disease in mushrooms, Journal of Microbiological Methods, 91 (2012) 514-519.

E. Osdaghi, S.J. Martins, L. Ramos-Sepulveda, F.R. Vieira, J.A. Pecchia, D.M. Beyer, T.H. Bell, Y. Yang, K.L. Hockett, C.T. Bull, 100 Years Since Tolaas: Bacterial Blotch of Mushrooms in the 21st Century, Plant Disease, 103 (2019) 2714-2732.

M. Rossitto, E.V. Fiscarelli, P. Rosati, Challenges and Promises for Planning Future Clinical Research Into Bacteriophage Therapy Against Pseudomonas aeruginosa in Cystic Fibrosis. An Argumentative Review, Frontiers in Microbiology, 9 (2018).

R. Nakayinga, A. Makumi, V. Tumuhaise, W. Tinzaara, Xanthomonas bacteriophages: a review of their biology and biocontrol applications in agriculture, BMC Microbiology, 21 (2021) 291.

R.P. Ryan, F.-J. Vorhölter, N. Potnis, J.B. Jones, M.-A. Van Sluys, A.J. Bogdanove, J.M. Dow, Pathogenomics of Xanthomonas: understanding bacterium–plant interactions, Nature Reviews Microbiology, 9 (2011) 344-355.

S. Petrocelli, M.L. Tondo, L.D. Daurelio, E.G. Orellano, Modifications of Xanthomonas axonopodis pv. citri Lipopolysaccharide Affect the Basal Response and the Virulence Process during Citrus Canker, PLOS ONE, 7 (2012) e40051.

G. Dunger, C.R. Guzzo, M.O. Andrade, J.B. Jones, C.S. Farah, Xanthomonas citri subsp. citri type IV pilus is required for twitching motility, biofilm development, and adherence, Molecular Plant-Microbe Interactions, 27 (2014) 1132-1147.

J. Wittmann, K.-H. Gartemann, R. Eichenlaub, B. Dreiseikelmann, Genomic and molecular analysis of phage CMP1 from Clavibacter michiganensis subspecies michiganensis, Bacteriophage, 1 (2011) 6-14.

R. Eichenlaub, K.H. Gartemann, A. Burger, Clavibacter michiganensis, a group of gram-positive phytopathogenic bacteria, in: S.S. Gnanamanickam (Ed.) Plant-Associated Bacteria, Springer Netherlands, Dordrecht, 2006, pp. 385-421.

E. Echandi, Bacteriocin production by Corynebacterium michiganense, Phytopathology, 66 (1976) 430-432.

R. Nir-Paz, E.J. Kuijper, Bacteriophage therapy in humans, Clinical Microbiology and Infection, 29 (2023) 679-681.

J.B. Jones, L.E. Jackson, B. Balogh, A. Obradovic, F.B. Iriarte, M.T. Momol, Bacteriophages for Plant Disease Control, Annual Review of Phytopathology, 45 (2007) 245-262.

C. Loc-Carrillo, S.T. Abedon, Pros and cons of phage therapy, Bacteriophage, 1 (2011) 111-114.

J.N. Housby, N.H. Mann, Phage therapy, Drug Discovery Today, 14 (2009) 536-540.

J.M. Lang, D.H. Gent, H.F. Schwartz, Management of Xanthomonas Leaf Blight of Onion with Bacteriophages and a Plant Activator, Plant Disease, 91 (2007) 871-878.

N. Korniienko, A. Kharina, I. Budzanivska, L. Burketová, T. Kalachova, Phages of phytopathogenic bacteria: High potential, but challenging application, Plant Protection Science, 58 (2022) 81-91.

A.S. Nilsson, Phage therapy—constraints and possibilities, Upsala journal of medical sciences, 119 (2014) 192-198.