Evaluation of Biological Control of Sorghum Strains Using Bacillus Thuringiensis and Pseudomonas Aeruginosa Under Drought Stress

Main Article Content

Samy A. A. Heiba
Ibthal S. El-Demerdash
Shimaa E. Rashad

Abstract

Background: Sorghum is an economically significant staple food crop for more than half a billion people in developing nations, especially in arid and semi-arid locations where drought stress is a significant limiting factor. Despite usually being regarded as tolerant, sorghum suffers severely from drought stress, which lowers its productivity and nutritional quality throughout its principal cultivation areas. Objective: Improvements in DNA fingerprinting by ISSRs, SSRs, and RAPD markers have also been employed in sorghum genetic modification (GMOs) to enhance the economic characteristics of this crop. Materials and methods: To provide a natural defence against pests, the most tolerant plants among the seven varieties of sorghum bicolour were selected and planted in the second season of 2020–2021 under treatment with two microorganisms, B. thuringiensis and P. aeruginosa. This study considered seven varieties of sorghum bicolour planted under 50% water deficiency in 2019–2020. Genetic variability analysis of sorghum genotypes was performed using seven Inter-Simple Sequence Repeat (ISSR) primers, six Simple Sequence Repeat (SSR) primers, and five Random Amplified Polymorphic DNA (RAPD) primers. Seven Sorghum bicolour accessions were collected from various regions of Egypt and their phylogenetic relationships were evaluated. Additionally, DNA fingerprinting and analyses of the genetic diversity and evolutionary linkages in the sorghum germplasm employed the (ISSR) molecular marker technique. Results and conclusion: The Fisher Least Significant difference test (LSD) at P < 0.05, based on RAPD, ISSR, and SSR markers demonstrated a significant connection.  The findings demonstrated that 51 bands with a size range of 100–1500 bp and polymorphism percentage of 72.5% were created using five RAPD primers. Seven ISSR primers generated 45 bands With a 57.8(%) polymorphism percentage, ranging in size from 100 to 3000 bp. six SSR primers generated 28 bands with (67.86%) polymorphism percentage of 67.86 %, ranging in size from 100 to 1500 bp. Morphological characteristics and ISSR, SSR, and RAPD analyses were used to group the UPGMA Dendrogram into groups. Jaccard's coefficient was used to analyse the genetic similarity matrix. The maximum similarity was observed for ISSR between Hybrid Sh1 and Hybrid Sh306 (0.984%), SSR between Hybrid Sh306 and Sudan grass (0.964%), and RAPD between Giza 15 and Indian Millet (0.706%). The classification of sorghum germplasm, breeding initiatives, and conservation efforts rely heavily on the determination of the genetic diversity among sorghum species. Identification of genetic variants, morphological features, and genetic analysis of ISSR, SSR, and RAPD are useful techniques. These findings demonstrate a large ratio of variation in sorghum. This work could serve as a guide for future research on sorghum and aid in the understanding of species and breeding initiatives.

Downloads

Download data is not yet available.

Article Details

How to Cite
Samy A. A. Heiba, Ibthal S. El-Demerdash, & Shimaa E. Rashad. (2022). Evaluation of Biological Control of Sorghum Strains Using Bacillus Thuringiensis and Pseudomonas Aeruginosa Under Drought Stress. Journal of Advanced Zoology, 43(S1), 410–424. https://doi.org/10.53555/jaz.v43iS1.1321
Section
Articles
Author Biographies

Samy A. A. Heiba

Genetics and Cytology, Department, Biotechnology Research Institute, National Research centre, Giza, Egypt.

Ibthal S. El-Demerdash

Genetics and Cytology, Department, Biotechnology Research Institute, National Research centre, Giza, Egypt.

Shimaa E. Rashad

Microbial Genetics Department, Biotechnology Research Institute, National Research centre, Giza, Egypt.

References

Newton AC, Flavell AJ, George TS, Leat P, Mullholland B, Ramsay L, Revoredo-Giha C, Russell J. Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Security, 2011; 3: 141-178.

Kleinhofs A, Han F. Molecular mapping of the barley genome. In: Slafer G, Molina-Cano JS, Savin R, Araus JL, Romagosa I, editors, Barley Science Recent Advances from Molecular Biology to Agronomy of Yield and Quality. Food Progucts Press, 2002; New York.

Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshney RK, HanumanthaRao B, Nair RM, Prasad PVV and Nayyar H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Front. Plant Sci. 2018; 9:1705. doi: 10.3389/fpls..01705.

Tao Y, George-Jaeggli B, Bouteillé-Pallas M, Tai S, Cruickshank A, Jordan D, Mace E. Genetic Diversity of C4 Photosynthesis Pathway Genes in Sorghum bicolor (L.). Genes (Basel). 2020; 16;11(7):806. doi: 10.3390/genes11070806. PMID: 32708598; PMCID: PMC7397294.

Shata S. M. 1,* , Said W. M. 1 , Abdel-Tawab F. M. 2 , Kamal L. M.2. Morphological and Quantitative traits of phylogenetic relationships of some barley (Hordeum vulgare L.) accessions in Egypt.ـ Journal of Scientific Research in Science, 2021; 38, (1): 16-35

Khaled, A., El-Sherbeny, G., Abdelaziz, H. 'SRAP and ISSR molecular markers-trait associations in sorghum genotypes', Assiut Journal of Agricultural Sciences, 2019; 50(2), pp. 159-175. doi: 10.21608/ajas..41433

Lakkakula Satish a,1 , Jayabalan Shilpha a,1 , Subramani Pandian a,1 , Arockiam Sagina Rency a , Periyasamy Rathinapriya a , Stanislaus Antony Ceasar b , Muthiah Joe Virgin Largia a , Are Ashok Kumar c , Manikandan Ramesh a, ⁎. Analysis of genetic variation in sorghum (Sorghum bicolor (L.) Moench) genotypes with various agronomical traits using SPAR methods. Gene 2016; 576, 581–585

Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, van de Wiel C, Bredemeijer G, Vosman Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Molecular Breeding, 1997; 3: 381-390.

Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 1994; 20: 176-183.

Tan, M. W., Rahme, L. G., Sternberg, J. A., Tompkins, R. G., and Ausubel, F. M. Pseudomonas aeruginosa killing of Caenorhabditiselegans used to identify P. aeruginosa virulence factors. Proc. Natl. Acad. Sci. U.S.A. 1999; 96, 2408–2413.

Sibley, C. D., Duan, K., Fischer, C., Parkins, M. D., Storey, D. G., Rabin, H. R., and Surette, M. G. Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoSPathog. 4, e1000184, 2008; doi: 10.1371/journal.ppat.1000184

Hendrickson, E. L., Plotnikova, J., Mahajan-Miklos, S., Rahme, L. G., and Ausubel, F. M. Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice. J. Bacteriol. 2001; 183, 7126–7134.

Berry, A., Devault, J. D., and Chakrabarty, A. M. High osmolarity is a signal for enhanced algD transcription in mucoid and non-mucoid Pseudomonas aeruginosa strains. J. Bacteriol. 1989; 171, 2312–2317.

Friedman, L., and Kolter, R. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J. Bacteriol. 2004b; 186, 4457–4465.

Jackson, K. D., Starkey, M., Kremer, S., Parsek, M. R., and Wozniak, D. J. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J. Bacteriol. 2004; 186, 4466–4475.

James C. Preview: Global status of commercialized biotech/GM crops: 2004. ISAAA Briefs No. 32. ISAAA (International Service for the Acquisition of Agri-biotech Applications): 2005; Ithaca, NY.

Davis, R.W., D. Botstein and J.R. Roth. A Manual for Genetic Engineering Advanced Bacterial Genetics, Cold Spring Harbor, 1980; New York,.

Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics. Mar 1994; 15;20(2):176-83. doi: 10.1006/geno..1151. PMID: 8020964.

Litt, M. and Luty, J.A. A Hypervariable Microsatellite Revealed by in Vitro Amplification of a Dinucleotide Repeat within the Cardiac Muscle Actin Gene. American Journal of Human Genetics, 1989; 44, 397- 401.Smith JSC, Chin ECL, Shu H,

Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV () DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990; 18: 6531-6535.

Rashad S E, Abdel-Tawab F M, Eman M Fahmy, Saker M M. Somaclonal variation from mature embryo explants of some Egyptian barley genotypes. Egypt. J. Genet. Cytol., 2020; 49:103-121.

Rashad S E, Abdel-Tawab F M, Eman M Fahmy, Saker M M. Transformation system of mature embryo of some Egyptian barley genotypes. Egypt. J. Genet. Cytol., 2020; 49:89-102.

Merwad M.A.1; E.A.M. Mostafa1; N.E. Ashour1; M.M.S. Saleh1; Ibthal S. El- Demerdash2 and Shimaa E. Rashad*3 (). Horticultural Studies And Genetic Relationship Via Dna Fingerprinting Using RAPD Markers Between Sewi Date Palm And Two Superior Seeded Females. Plant Cell Biotechnology And Molecular Biology, 2020; 22 (59&60): 56-66.

Tiselius A. The moving-boundary method of studying the electrophoresis of proteins.. No a Acta Regiae Societatis Scientiarum Upsaliensis. 1930; 7(series IV):1.

Nie, Norman H., 1943 & Hull, C. Hadlai & Bent, Dale H. SPSS: statistical package for the social sciences [by] Norman Nie, Dale H. Bent [and] C. Hadlai Hull. 1970; New York, : McGraw-Hill.

Gomez K. A. and Gomez A. A. (1984). Statistical procedures for agricultural research. John wiley & sons. P. 180.

Samy A A. Heiba, Rania T Ali, Hamdy M Abdel-Rahman and Shimaa E. Rashad. Detected molecular markers for Alfalfa (Medicago sativa) using ISSR and SSR under Egyptian conditions. International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS), 2022; XI, XI, 2278- 2540

Rashad S. E. a *, Samy A. A. Heiba b, Mohamed A. Emam c, Samira A. Osman and Ibthal Salah Eldemerdash b. Influence of PEG induced drought stress on Genetic diversity using SDS-PAGE and ISSR markers for seven Barley (Hordeum vulgare L.) varieties in Egyptian conditions. 2023; In press

Rashad S. E., El- Demerdash I. S., Abdel-Rahman H. M., EL-Enany, M. A. M, Heiba S. A. A. Enhancement of some barley (Hordeum vulgare L.) resistance for nematode (Heterodera avenae) using DNA fingerprinting analysis. Egyptian Pharmaceutical Journal, 2023; in press.

Lase, E. M., & Nkosi, F. (2023). Human-Centric AI: Understanding and Enhancing Collaboration between Humans and Intelligent Systems. Algorithm Asynchronous, 1(1), 33–40. Retrieved from

https://hasmed.org/index.php/jourasy/article/view/49

Singh K, Smartt J, Simpson CE, Raina SN. Genetic variation vis-a-vis molecular polymorphism in groundnut, Arachis hypogaea L., Genetic Resources and Crop Evolution, 1998; 45: 119-126

Allel D, Ben-Amar A, Lamine M, Abdelly C. Relationships and genetic structure of North African barley (Hordeum vulgare L.) germplasm revealed by morphological and molecular markers: Biogeographical considerations. South African Journal of Botany, 2017; 112: 1-10.

Bidinger, F. R. , G. L. Hammer and R. C. Muchow.“The Physiological Basis of Genotype by Environment Interac-tion in Crop Adaptation,” In: M. Cooper and G. L. Ham-mer, Eds., Plant Adaptation and Crop Improvement, CAB International, Wallingford, 1996; 329-347 .

Billot C, Rivallan R, Sall MN, Fonceka D, Deu M. A reference microsatellite kit to assess for genetic diversity of Sorghum bicolor (Poaceae). American Journal of Botany 2012; 99: e245–e250.

Guasmi F, W Elfalleh, H Hannachi, K Feres, L Touil, N Marzougui, A Ferchichi, The use of ISSR and RAPD markers for genetic diversity among south tunisian barley, International Scholarly Research Notices, 2012.

Tawfik, R.S., El-Mouhamady, A.B.A. Molecular genetic studies on abiotic stress resistance in sorghum entries through using half diallel analysis and inter-simple sequence repeat (ISSR) markers. Bull Natl Res Cent., 2019; 43, 117. https://doi.org/10.1186/s42269-019-0155-1

Souframanien J, Gopalakrishna T (2004). A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers, Theoretical and Applied Genetics,; 109: 1687-1693

Wang ML, Barkley NA, Yu J-K, Dean RE, Newman ML. Transfer of simple sequence repeat (SSR) markers from major cereal crops to minor grass species for germplasm characterization and evaluation. Plant Genetic Resources. 2005; 3: 45–57.

Smith OS, Wall SJ, Senior ML, Ziegle J. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree, Theoretical and Applied Genetics, 1997; 95: 163-173

Ali, M.; M. Hussain; M. Nisar; A. Singha; W. Khan; S. U. Zaman and A. Khan (2019) Estimation and conformation of HMW glutenin loci in Pakistani barley lines detected through polyacrylamide gel electrophoresis. Journal of Biodiversity and Environmental Sciences, 14(4):27-33.

Tahir,N. A.(2014) Comparison of RAPD-PCR And SDS1PAGE techniques to evaluate genetic variation among nine barley varieties (Hordeum spp). Malays Appl. Biol., 43(1):109-119.

Izzatullayeva V, Z. Akparov, S. Babayeva, J. Ojaghi, M. Abbasov. Efficiency of using RAPD and ISSR markers in evaluation of genetic diversity in sugar beet, Turkish Journal of Biology. 2014; 38: 429- 438

Vaja KN, HP Gajera, ZA Katakpara, SV Patel, BA Golakiya. Biochemical indices and RAPD markers for salt tolerance in wheat genotypes, Indian Journal of Plant Physiology. 2016; 21: 143-150 M.

Kadiri, M. Ater, Diversité des variétés « locales » du sorgho grain (Sorghum bicolor Moench L.) au nord-ouest du Maroc. Rapport du symposium sur les ressources phylogénétiques et développement durable, Actes éditions, Rabat, Maroc, 1997; pp. 203–218

M. Deu, P. Hamon, J. Chantereau, P. Dufour, A. D'hont, C. Lanaud Mitochondrial DNA diversity in wild and cultivated sorghum Genome, 38 1995; 635-645

Bahrman N, Gouis J Le, Hariri D, Guilbaud L, Jestin L. Genetic diversity of old French six-rowed winter barley varieties assessed with molecular, biochemical and morphological markers and its relation to BaMMV resistance, Heredity, 1999; 83: 568-574

Allel D, A Ben-Amar, M Lamine, C Abdelly, Relationships and genetic structure of North African barley (Hordeum vulgare L.) germplasm revealed by morphological and molecular markers: Biogeographical considerations. South African Journal of Botany, 2017; 112: 1-10.

Sibley, C. D., Duan, K., Fischer, C., Parkins, M. D., Storey, D. G., Rabin, H. R., and Surette, M. G. Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoSPathog. 4, 2008; e1000184. doi: 10.1371/journal.ppat.1000184

Eshghi R, E Akhundova, Genetic diversity in hulless barley based on agromorphological traits and RAPD markers and comparison with storage protein analysis, African Journal of Agricultural Research, 2010; 5: 97-107

Most read articles by the same author(s)