Cardiac Cell Regeneration in Zebrafish A Systematic Review Study.

Authors

  • Mohammed Al-shammri
  • Jawaher Saad Alanazi
  • Shadad Nazel
  • Ali Alanazi
  • Abdulaziz Hejazi
  • Mahmoud Achira
  • Amal Alosaimi
  • Abdulrahman Alhamidi
  • Danah Alghamdi
  • Abdulrahman Alsaigh
  • Murtada Aldahan

DOI:

https://doi.org/10.53555/jaz.v45iS1.1030

Keywords:

Zebrafish, Cardiac Cell, Regeneration, Danio rerio, Apex, Resection

Abstract

Objective: This research aims to increase the level and quality of the information acquired from 90 previously conducted studies regarding zebrafish heart regeneration and to summarize the best and latest information as well as the methods gleaned from those studies, which will allow us to determine the best ways to rebuild cardiac tissue in zebrafish.

Methods: This study was conducted under the PRISMA guidelines. The search for primary research articles was conducted using PubMed, Web of science, and Mendeley. We used the latest update of Microsoft office Excel, Of the total 1158 results, 1066 were dropped according to the criteria for exclusion. The selected results included previously published and unpublished studies on cardiac cell regeneration in zebrafish from 2012 to 2022.

Results: 90 studies met the inclusion criteria. Out of these, 43 used the AR method, 36 used cryoinjury, and 16 used genetic amputation. All methods used were based on selected heart sections, not the whole heart. The primary evaluation technique used in the included studies was histology, either alone or in combination with other methods. Acid Fuchsin Orange G (AFOG), Masson's Trichrome (MT), Hematoxylin/Eosin (HE), immunofluorescence (IF), and in situ hybridization (ISH) were the main histological techniques employed to assess heart regrowth and regeneration.

Conclusion: This study may have a risk of bias due to the qualitative and quantitative data that was selected. Further research can help understand and utilize zebrafish regeneration genes in humans.

Downloads

Download data is not yet available.

Author Biographies

Mohammed Al-shammri

Medicine & surgery, Imam Mohammed Ibn Saud Islamic, Riyadh, Saudi Arabia

Jawaher Saad Alanazi

Medicine & surgery, Imam Mohammed Ibn Saud Islamic, Riyadh, Saudi Arabia

Shadad Nazel

Pharmacology, Princess Nourah Bint Abdularahman University, Riyadh, Saudi Arabia

Ali Alanazi

Medicine & surgery, Imam Mohammed Ibn Saud Islamic, Riyadh, Saudi Arabia

Abdulaziz Hejazi

Medicine & surgery, Imam Mohammed Ibn Saud Islamic, Riyadh, Saudi Arabia

Mahmoud Achira

Infectious Diseases, Manchester University NHS Foundation Trust, Manchester, United Kingdom

Amal Alosaimi

Medicine & surgery, Imam Mohammed Ibn Saud Islamic, Riyadh, Saudi Arabia

Abdulrahman Alhamidi

Medicine & surgery, Imam Mohammed Ibn Saud Islamic, Riyadh, Saudi Arabia

Danah Alghamdi

Medicine & surgery, Imam Mohammed Ibn Saud Islamic, Riyadh, Saudi Arabia

Abdulrahman Alsaigh

Medicine & surgery, Imam Mohammed Ibn Saud Islamic, Riyadh, Saudi Arabia

Murtada Aldahan

King Saud Medical City, Riyadh, Saudi Arabia.

References

Ulhaq ZS, Tse WKF: A Brief Analysis of Proteomic Profile Changes during Zebrafish Regeneration. Biomolecules. 2021, 12:35. 10.3390/biom12010035

van der Pol A, Bouten CVC: A Brief History in Cardiac Regeneration, and How the Extra Cellular Matrix May Turn the Tide. Front Cardiovasc Med. 2021, 8:682342. 10.3389/fcvm.2021.682342

Juul Belling H, Hofmeister W, Andersen DC: A Systematic Exposition of Methods used for Quantification of Heart Regeneration after Apex Resection in Zebrafish. Cells. 2020, 9:548. 10.3390/cells9030548

Reuter H, Perner B, Wahl F, et al.: Aging Activates the Immune System and Alters the Regenerative Capacity in the Zebrafish Heart. . Cells. 2022, 11:345. 10.3390/cells11030345

Miklas JW, Levy S, Hofsteen P, et al.: Amino acid primed mTOR activity is essential for heart regeneration. . iScience. 2021, 25:103574. 10.1016/j.isci.2021.103574

Mao LMF, Boyle Anderson EAT, Ho RK: Anterior lateral plate mesoderm gives rise to multiple tissues and requires tbx5a function in left-right asymmetry, migration dynamics, and cell specification of late-addition cardiac cells. Dev Biol. 2021, 472:52-66. 10.1016/j.ydbio.2021.01.007

Ellman DG, Slaiman IM, Mathiesen SB, et al.: Apex Resection in Zebrafish (Danio rerio) as a Model of Heart Regeneration: A Video-Assisted Guide. Int J Mol Sci. 2021, 22:5865. 10.3390/ijms22115865

Simões FC, Cahill TJ, Kenyon A, et al.: Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat Commun. 2020, 11:600. 10.1038/s41467-019-14263-2

Mukherjee D, Wagh G, Mokalled MH, et al.: Ccn2a is an injury-induced matricellular factor that promotes cardiac regeneration in zebrafish.. Développent. 2021, 148:193219. 10.1242/dev.193219

FitzSimons M, Beauchemin M, Smith AM, et al.: Cardiac injury modulates critical components of prostaglandin E2 signaling during zebrafish heart regeneration. Sci Rep. 2020, 10:3095. 10.1038/s41598-020-59868-6

Nguyen PD, de Bakker DEM, Bakkers J: Cardiac regenerative capacity: an evolutionary afterthought?. Cell Mol Life Sci. 2021, 78:5107-5122. 10.1007/s00018-021-03831-9

de Wit L, Fang J, Neef K, et al.: Cellular and Molecular Mechanism of Cardiac Regeneration: A Comparison of Newts, Zebrafish, and Mammals. Biomolecules. 2020, 10:1204. 10.3390/biom10091204

Golenberg N, Squirrell JM, Bennin DA, et al.: Citrullination regulates wound responses and tissue regeneration in zebrafish.. J Cell Biol. 2020, 219:10.1083/jcb.201908164

Peng X, Lai KS, She P, et al.: Induction of Wnt signaling antagonists and p21-activated kinase enhances cardiomyocyte proliferation during zebrafish heart regeneration. J Mol Cell Biol. 2021, 13:41-58. 10.1093/jmcb/mjaa046

Begeman IJ, Shin K, Osorio-Méndez D, et al.: Decoding an organ regeneration switch by dissecting cardiac regeneration enhancers. . Développent. 2020, 147:194019. 10.1242/dev.194019

Tahara N, Brush M, Kawakami Y: Cell migration during heart regeneration in zebrafish. Dev Dyn. 2016, 245:774-787. 10.1002/dvdy.24411

Kaveh A, Bruton FA, Buckley C, et al.: Live Imaging of Heart Injury in Larval Zebrafish Reveals a Multi-Stage Model of Neutrophil and Macrophage Migration. Front Cell Dev Biol. 2020, 8:579943. 10.3389/fcell.2020.579943

Grivas D, González-Rajal Á, de la Pompa JL: Midkine-a Regulates the Formation of a Fibrotic Scar During Zebrafish Heart Regeneration. Front Cell Dev Biol. 2021, 9:669439. 10.3389/fcell.2021.669439

Shimizu Y, Kawasaki T: Differential Regenerative Capacity of the Optic Tectum of Adult Medaka and Zebrafish. Front Cell Dev Biol. 2021, 9:686755. 10.3389/fcell.2021.686755

Dicks S, Jürgensen L, Leuschner F, Hassel D, Andrieux G, Boerries M: Cardiac Regeneration and Tumor Growth-What Do They Have in Common?. Front Genet. 2020, 11:586658. 10.3389/fgene.2020.586658

Lee S, Hesse R, Tamaki S, Garland C, Pomerantz JH: Human ARF Specifically Inhibits Epimorphic Regeneration in the Zebrafish Heart. Genes (Basel. 2020, 11:666. 10.3390/genes11060666

Sun J, Peterson EA, Wang AZ, et al.: hapln1 Defines an Epicardial Cell Subpopulation Required for Cardiomyocyte Expansion During Heart Morphogenesis and Regeneration. Circulation. 2022, 146:48-63. 10.1161/CIRCULATIONAHA.121.055468

Riley SE, Feng Y, Hansen CG: Hippo-Yap/Taz signalling in zebrafish regeneration. NPJ Regen Med. 2022, 7:9. 10.1038/s41536-022-00209-8

Pronobis MI, Zheng S, Singh SP, Goldman JA, Poss KD: In vivo proximity labeling identifies cardiomyocyte protein networks during zebrafish heart regeneration. Elife. 2021, 10:66079. 10.7554/eLife.66079

Surgical Pathology reports. National Cancer Institute. . https://www.cancer.gov/about-cancer/diagnosis-staging/diagnosis/pathology-reports-fact-sheet:

Liu KC, Villasenor A, Bertuzzi M, et al.: Insulin-producing β-cells regenerate ectopically from a mesodermal origin under the perturbation of hemato-endothelial specification. Elife. 2021, 10:65758. 10.7554/eLife.65758

Guo R, Li F, Lu M, Ge K, Gan L, Sheng D: LIM Homeobox. 9:056382. 10.1242/bio.056382

Honkoop H, Nguyen PD, van der Velden VEM, Sonnen KF, Bakkers J: Live imaging of adult zebrafish cardiomyocyte proliferation ex vivo. Development. 2021, 148:199740. 10.1242/dev.199740

Lübke L, Zhang G, Strähle U, Rastegar S: mdka Expression Is Associated with Quiescent Neural Stem Cells during Constitutive and Reactive Neurogenesis in the Adult Zebrafish Telencephalon. Brain Sci. 2022, 12:284. 10.3390/brainsci12020284

Zhang X, Yang Y, Bu X, Wei Y, Lou X: The major vault protein is dispensable for zebrafish organ regeneration. Heliyon. 2020, 6:05422. 10.1016/j.heliyon.2020.e05422

Tahara N, Akiyama R, Wang J, Kawakami H, Bessho Y, Kawakami Y: The FGF-AKT pathway is necessary for cardiomyocyte survival for heart regeneration in zebrafish. Dev Biol. 2021, 472:30-37. 10.1016/j.ydbio.2020.12.019

Ryan R, Moyse BR, Richardson RJ: Zebrafish cardiac regeneration-looking beyond cardiomyocytes to a complex microenvironment. Histochem Cell Biol. 2020, 154:533-548. 10.1007/s00418-020-01913-6

Chen CH, Durand E, Wang J, Zon LI, Poss KD: zebraflash transgenic lines for in vivo bioluminescence imaging of stem cells and regeneration in adult zebrafish. Development. 2013, 140:4988-4997. 10.1242/dev.102053

Peterson EA, Sun J, Wang J: Leukocyte-Mediated Cardiac Repair after Myocardial Infarction in Non-Regenerative vs. Regenerative Systems. J Cardiovasc Dev Dis. 2022, 9:63. 10.3390/jcdd9020063

Dyck PKV, Hockaden N, Nelson EC, et al.: Cauterization as a Simple Method for Regeneration Studies in the Zebrafish Heart. J Cardiovasc Dev Dis. 2020, 7:41. 10.3390/jcdd7040041

Bühler A, Gahr BM, Park DD, et al.: Histone deacetylase 1 controls cardiomyocyte proliferation during embryonic heart development and cardiac regeneration in zebrafish. PLoS Genet. 2021, 17:1009890. 10.1371/journal.pgen.1009890

Li X, Lu Q, Peng Y, et al.: Primary cilia mediate Klf2-dependant Notch activation in regenerating heart. Protein Cell. 2020, 11:433-445. 10.1007/s13238-020-00695-w

Xie F, Xu S, Lu Y, et al.: Metformin accelerates zebrafish heart regeneration by inducing autophagy. NPJ Regen Med. 2021, 6:62. 10.1038/s41536-021-00172-ww

Bise T, Sallin P, Pfefferli C, Jaźwińska A: Multiple cryoinjuries modulate the efficiency of zebrafish heart regeneration. Sci Rep. 2020, 10:11551. 10.1038/s41598-020-68200-1

Ye S, Zhao T, Zhang W, et al.: p53 isoform Δ113p53 promotes zebrafish heart regeneration by maintaining redox homeostasis. Cell Death Dis. 2020, 11:568. 10.1038/s41419-020-02781-7

Joshi, & Yu: Immucnofluorescence. In Basic Science Methods for. Clinical Researchers (pp. 135150,

Bergen DJM, Tong Q, Shukla A, et al.: Regenerating zebrafish scales express a subset of evolutionary conserved genes involved in human skeletal disease. BMC Biol. 2022, 20:21. 10.1186/s12915-021-01209-8

Del Campo CV, Liaw NY, Gunadasa-Rohling M, et al.: Regenerative potential of epicardium-derived extracellular vesicles mediated by conserved miRNA transfer. Cardiovasc Res. 2022, 118:597-611. 10.1093/cvr/cvab054

Koth J, Wang X, Killen AC, et al.: Runx1 promotes scar deposition and inhibits myocardial proliferation and survival during zebrafish heart regeneration. Development. 2020, 147:186569. 10.1242/dev.186569

Kim AR, Kim SW, Lee BW, et al.: Screening ginseng saponins in progenitor cells identifies 20(R)-ginsenoside Rh2 as an enhancer of skeletal and cardiac muscle regeneration. Sci Rep. 2020, 10:4967. 10.1038/s41598-020-61491-4

Fukuda R, Marín-Juez R, El-Sammak H, et al.: Stimulation of glycolysis promotes cardiomyocyte proliferation after injury in adult zebrafish. EMBO Rep. 2020, 21:49752. 10.15252/embr.201949752

Fang Y, Lai KS, She P, Sun J, Tao W, Zhong TP: Tbx20 Induction Promotes Zebrafish Heart Regeneration by Inducing Cardiomyocyte Dedifferentiation and Endocardial Expansion. Front Cell Dev Biol. 2020, 8:738. 10.3389/fcell.2020.00738

Bensimon-Brito A, Ramkumar S, Boezio GLM, et al.: TGF-β Signaling Promotes Tissue Formation during Cardiac Valve Regeneration in Adult Zebrafish. Dev Cell. 2020, 52:9-20. 10.1016/j.devcel.2019.10.027

George RM, Maldonado-Velez G, Firulli AB: The heart of the neural crest: cardiac neural crest cells in development and regeneration. Development. 2020, 147:188706. 10.1242/dev.188706

Feng X, Travisano S, Pearson CA, Lien CL, Harrison MRM: The Lymphatic System in Zebrafish Heart Development, Regeneration and Disease Modeling. J Cardiovasc Dev Dis. 2021, 8:21. 10.3390/jcdd8020021

- Staining in Microscopy - Stains and Techniques From Wikipedia | PDF | Staining | Acetic Acid. (n.d.). Scribd. https://www.scribd.com/doc/99585713/Staining-in-Microscopy-Stains-and-Techniques-From-Wikipedia.

She P, Zhang H, Peng X, et al.: The Gridlock transcriptional repressor impedes vertebrate heart regeneration by restricting expression of lysine methyltransferase. Development. 2020, 147:190678. 10.1242/dev.190678

Lowe V, Wisniewski L, Pellet-Many C: The Zebrafish Cardiac Endothelial Cell-Roles in Development and Regeneration. J Cardiovasc Dev Dis. 2021, 8:49. 10.3390/jcdd8050049

Sharpe M, González-Rosa JM, Wranitz F, et al.: Ruvbl2 Suppresses Cardiomyocyte Proliferation During Zebrafish Heart Development and Regeneration. Front Cell Dev Biol. 2022, 10:800594. 10.3389/fcell.2022.800594

Rochon ER, Missinato MA: Xue J, et al. Nitrite Improves Heart Regeneration in Zebrafish. Antioxid Redox Signal. 2020, 32:363-377. 10.1089/ars.2018.7687

Yip JK, Harrison M, Villafuerte J, et al.: Extended culture and imaging of normal and regenerating adult zebrafish hearts in a fluidic device. Lab Chip. 2020, 20:274-284. 10.1039/c9lc01044k

Pronobis MI, Poss KD: Signals for cardiomyocyte proliferation during zebrafish heart regeneration. Curr Opin Physiol. 2020, 14:78-85. 10.1016/j.cophys.2020.02.002

Beffagna, G. (2019: Zebrafish as a smart model to understand regeneration after heart injury: How fish could help humans. Frontiers in Cardiovascular Medicine. 6:

Carril Pardo CA, Massoz L, Dupont MA, et al.: A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes. Elife. 2022, 11:67576. 10.7554/eLife.67576

Chu L, Yin H, Gao L, et al.: Cardiac Na+-Ca2+ exchanger 1 (ncx1h) is critical for the ventricular cardiomyocyte formation via regulating the expression levels of gata4 and hand2 in zebrafish. Sci China Life Sci. 2021, 64:255-268. 10.1007/s11427-019-1706-1

Iribarne M: Inflammation induces zebrafish regeneration. Neural Regen Res. 2021, 16:1693-1701. 10.4103/1673-5374.306059

Li H, Chang C, Li X, Zhang R: The roles and activation of endocardial Notch signaling in heart regeneration. Cell Regen. 2021, 10:3. 10.1186/s13619-020-00060-6

Zhang W, Liang J, Han P: Cardiac cell type-specific responses to injury and contributions to heart regeneration. Cell Regen. 2021, 10:4. 10.1186/s13619-020-00065-1

Harrison MR, Feng X, Mo G, et al.: Late developing cardiac lymphatic vasculature supports adult zebrafish heart function and regeneration. Elife. 2019, 8:42762. 10.7554/eLife.42762

Brezitski KD, Goff AW, DeBenedittis P, Karra R: A Roadmap to Heart Regeneration Through Conserved Mechanisms in Zebrafish and Mammals. Curr Cardiol Rep. 2021, 23:29. 10.1007/s11886-021-01459-6

Nunes LS, Domingues WB, Kremer FS, Pinhal D, Campos VF: Reconstruction of regulatory network predicts transcription factors driving the dynamics of zebrafish heart regeneration. Gene. 2022, 819:146242. 10.1016/j.gene.2022.146242

Wang X, Guo H, Yu F, et al.: Keratin5-cytoskeleton-BMP4 network regulates cell phenotype conversions during cardiac regeneration. Exp Cell Res. 2022, 418:113272. 10.1016/j.yexcr.2022.113272

Bertozzi A, Wu CC, Hans, Brand M, Weidinger G : Wnt/β-catenin signaling acts cell-autonomously to promote cardiomyocyte regeneration in the zebrafish heart. 2022, 481:226-237.

Moyse BR, Richardson RJ: A Population of Injury-Responsive Lymphoid Cells Expresses mpeg1.1 in the Adult Zebrafish Heart. Immunohorizons. 2020, 4:464-474. 10.4049/immunohorizons.2000063

Sande-Melón M, Marques IJ, Galardi-Castilla M, et al.: Adult sox10+ Cardiomyocytes Contribute to Myocardial Regeneration in the Zebrafish. Cell Rep. 2019, 29:1041-1054. 10.1016/j.celrep.2019.09.041

Cao Y, Cao J: Covering and Re-Covering the Heart: Development and Regeneration of the Epicardium. J Cardiovasc Dev Dis. 2018, 6:3. 10.3390/jcdd6010003

Xu S, Liu C, Xie F, et al.: Excessive inflammation impairs heart regeneration in zebrafish breakdance mutant after cryoinjury. Fish Shellfish Immunol. 2019, 89:117-126. 10.1016/j.fsi.2019.03.058

Wang J, Karra R, Dickson AL, Poss KD: Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev Biol. 2013, 382:427-435. 10.1016/j.ydbio.2013.08.012

Ho-Chiang C, Huang H, Huang CC: High-frequency ultrasound deformation imaging for adult zebrafish during heart regeneration. Quant Imaging Med Surg. 2020, 10:66-75. 10.21037/qims.2019.09.20

Ross Stewart KM, Walker SL, Baker AH, Riley PR, Brittan M: Hooked on heart regeneration: the zebrafish guide to recovery. Cardiovasc Res. 2022, 118:1667-1679. 10.1093/cvr/cvab214

Jopling C, Suñé G, Faucherre A, Fabregat C, Izpisua Belmonte JC: Hypoxia induces myocardial regeneration in zebrafish. Circulation. 2012, 126:3017-3027. 10.1161/CIRCULATIONAHA.112.107888

Parente V, Balasso S, Pompilio G, et al.: Hypoxia/reoxygenation cardiac injury and regeneration in zebrafish adult heart. PLoS One. 2013, 8:53748. 10.1371/journal.pone.0053748

Francoeur N, Sen R: Advances in Cardiac Development and Regeneration Using Zebrafish as a Model System for High-Throughput Research. J Dev Biol. 2021, 9:40. 10.3390/jdb9040040

Peters MMC, Sampaio-Pinto V, da Costa Martins PA: Non-coding RNAs in endothelial cell signalling and hypoxia during cardiac regeneration. Biochim Biophys Acta Mol Cell Res. 2020, 1867:118515. 10.1016/j.bbamcr.2019.07.010

Gemberling M, Karra R, Dickson AL, Poss KD: Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. Elife. 20154, 05871-2015. 10.7554/eLife.05871

de Bakker DEM, Bouwman M, Dronkers E, et al.: Prrx1b restricts fibrosis and promotes Nrg1-dependent cardiomyocyte proliferation during zebrafish heart regeneration. Development. 2021, 148:198937. 10.1242/dev.198937

Yin VP, Lepilina A, Smith A, Poss KD: Regulation of zebrafish heart regeneration by miR-133. Dev Biol. 2012, 365:319-327. 10.1016/j.ydbio.2012.02.018

Sánchez-Iranzo H, Galardi-Castilla M, Minguillón C, et al.: Tbx5a lineage tracing shows cardiomyocyte plasticity during zebrafish heart regeneration. Nat Commun. 2018, 9:428. 10.1038/s41467-017-02650-6

Bednarek D, González-Rosa JM, Guzmán-Martínez G, et al.: Telomerase Is Essential for Zebrafish Heart Regeneration. Cell Rep. 2015, 12:1691-1703. 10.1016/j.celrep.2015.07.064

Huang WC, Yang CC, Chen IH, Liu YM, Chang SJ, Chuang YJ: Treatment of Glucocorticoids Inhibited Early Immune Responses and Impaired Cardiac Repair in Adult Zebrafish. PLoS One. 2013, 8:66613. 10.1371/journal.pone.0066613

Chávez MN, Morales RA, López-Crisosto C, Roa JC, Allende ML, Lavandero S: Autophagy Activation in Zebrafish Heart Regeneration. Sci Rep. 2020, 10:2191. 10.1038/s41598-020-59106-z

Peng Y, Wang W, Fang Y, et al.: Inhibition of TGF-β/Smad3 Signaling Disrupts Cardiomyocyte Cell Cycle Progression and Epithelial-Mesenchymal Transition-Like Response During Ventricle Regeneration. Front Cell Dev Biol. 2021, 9:632372. 10.3389/fcell.2021.632372

Bertozzi A, Wu CC, Nguyen PD, et al.: Is zebrafish heart regeneration "complete"? Lineage-restricted cardiomyocytes proliferate to pre-injury numbers but some fail to differentiate in fibrotic hearts. Dev Biol. 2021, 471:106-118. 10.1016/j.ydbio.2020.12.004

Klaourakis K, Vieira JM, Riley PR: The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol. 2021, 18:368-379. 10.1038/s41569-020-00489-x

Helston O, Amaya E: Reactive oxygen species during heart regeneration in zebrafish: Lessons for future clinical therapies. Wound Repair Regen. 2021, 29:211-224. 10.1111/wrr.12892

Downloads

Published

2024-01-10

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.