A Review On Vocalization Of Birds For Identification, Associated Behavior, And Database Development.

Authors

  • Sachin Debaje

DOI:

https://doi.org/10.53555/jaz.v46i2.5331

Keywords:

Bird Vocalization, Bird Identification, Bird Acoustic, Vocal Behavior of Birds

Abstract

Birds play a crucial role in ecosystems by occupying almost every habitat and serving at multiple trophic levels, making them reliable indicators of environmental health. Birds communicate with each other by producing sounds. This bird’s vocalization is associated with different behaviors, making it a useful tool for monitoring populations and measuring the biodiversity. Birds have a special organ for the vocalization. Both male and female songbirds use vocalizations to deliver specific information to the receiver. The bird vocalization is classified into calls and songs. Calls have a large functionality and 10 different call categories such as alarm, flight, feeding, etc. A spectrogram is a visualization of sounds and can be used to visualize the frequencies over time. The point–count method is one of the most popular techniques for surveying birds based on vocalization. Autonomous recording units (ARUs) are a new technology for studying and monitoring animals' vocalizations. A review paper presents the review of the vocalization of birds for identification, associated behavior, and database development.

Downloads

Download data is not yet available.

Author Biography

Sachin Debaje

Department of Zoology, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (MH), India.

References

1. Alström, P., & Ranft, R. (2003). The use of sounds in avian systematics and the importance of bird sound archives. Bull. BOC, 123, 114-135.

2. Aparna, P. C. (2015). Automatic recognition of birds through audio spectral analysis. In 2015 Fifth International Conference on Advances in Computing and Communications (ICACC) (pp. 395-398). IEEE.

3. Asokan, S., & Ali, A. M. S. (2010). Time-activity budget of white-breasted kingfisher Halcyon smyrnensis in Cauvery Delta Region, Tamil Nadu, India. Advances in Biological Research, 4(6), 288-291.

4. Baxter, A. T.; Bell, J. C.; Allan, J. R.; and Fairclough, J. (1999). "The Interspecificity of Distress Calls". 1999 Bird Strike Committee-USA/Canada, First Joint Annual Meeting.

5. Bhatt, D., Sethi, V. K., Kumar, A., & Singh, A. (2014). Some notes on the breeding behaviour of the oriental magpie robin (Copsychus saularis) from Uttarakhand, India. Journal of Sustainability Science and Management, 9(1), 112-119.

6. Brumm, H., & Ritschard, M. (2011). Song amplitude affects territorial aggression of male receivers in chaffinches. Behavioral Ecology, 22(2), 310-316.

7. Catchpole, C. K., & Slater, P. J. (2003). Bird song: biological themes and variations. Cambridge university press.

8. Chakraborty, D., Mukker, P., Rajan, P., & Dileep, A. D. (2016). Bird call identification using dynamic kernel-based support vector machines and deep neural networks. In 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 280-285). IEEE.

9. Conway, C. J., & Gibbs, J. P. (2001). Factors influencing detection probability and the benefits of call broadcast surveys for monitoring marsh birds. Progress report to USGS-BRD for USDA project, 5004789.

10. Derrickson, K. C. (1987). Yearly and situational changes in the estimate of repertoire size in northern mockingbirds (Mimus polyglottos). The Auk, 104(2), 198-207.

11. Digby, A., Towsey, M., Bell, B. D., & Teal, P. D. (2014). Temporal and environmental influences on the vocal behaviour of a nocturnal bird. Journal of Avian Biology, 45(6), 591-599.

12. Divyapriya, C., & Pramod, P. (2019). Spectral characteristics of Common Iora Aegithina tiphia vocalizations and their context-specific preferences. Current Science, 117(11), 1863-1871.

13. Dowling, J. L., Luther, D. A., & Marra, P. P. (2012). Comparative effects of urban development and anthropogenic noise on bird songs. Behavioral Ecology, 23(1), 201-209.

14. Fanioudakis, L., & Potamitis, I. (2017). Deep networks tag the location of bird vocalisation on audio spectrograms. arXiv preprint arXiv:1711.04347.

15. Foote, J. R., Palazzi, E., & Mennill, D. J. (2013). Songs of the Eastern Phoebe, a suboscine songbird, are individually distinctive but do not vary geographically. Bioacoustics, 22(2), 137-151.

16. Gaunt, A. S. (1983). An hypothesis concerning the relationship of syringeal structure to vocal abilities. The Auk, 100(4), 853-862.

17. Halfwerk, W., Lohr, B., & Slabbekoorn, H. (2018). Impact of man-made sound on birds and their songs. Effects of anthropogenic noise on animals, 209-242.

18. Haselmayer, J., & Quinn, J. S. (2000). A comparison of point counts and sound recording as bird survey methods in Amazonian southeast Peru. The Condor, 102(4), 887-893.

19. Tobias, J. A., Aben, J., Brumfield, R. T., Derryberry, E. P., Halfwerk, W., Slabbekoorn, H., & Seddon, N. (2010). Song divergence by sensory drive in Amazonian birds. Evolution, 64(10), 2820-2839.

20. Kahl, S., Wood, C. M., Eibl, M., & Klinck, H. (2021). BirdNET: A deep learning solution for avian diversity monitoring. Ecological Informatics, 61, 101236.

21. Kamtaeja, S., Sitasuwan, N., Chomdej, S., Jatisatienr, A., & Mennill, D. J. (2012). Species-distinctiveness in the vocal behaviour of six sympatric bulbuls (genus Pycnonotus) in South-East Asia. Emu-Austral Ornithology, 112(3), 199-208.

22. Katti, M. (2001). Vocal communication and territoriality during the non-breeding season in a migrant warbler. Current Science, 419-423.

23. Keen, S. C., Meliza, C. D., & Rubenstein, D. R. (2013). Flight calls signal group and individual identity but not kinship in a cooperatively breeding bird. Behavioral Ecology, 24(6), 1279-1285.

24. Kershenbaum, A., & Garland, E. C. (2015). Quantifying similarity in animal vocal sequences: which metric performs best? Methods in Ecology and Evolution, 6(12), 1452-1461.

25. Krebs, J. R., & Kroodsma, D. E. (1980). Repertoires and geographical variation in bird song. In Advances in the Study of Behavior (Vol. 11, pp. 143-177). Academic Press.

26. Kumar, A. (2011). Physical characteristics, categories and functions of song in the Indian Robin Saxicoloides fulicata (Aves: Muscicapidae). Journal of Threatened Taxa, 3(7), 1909-1918.

27. Kumar, A. (2012). Songs and Calls of Indian Birds: Implications for Behavioural Studies, Systematics and Conservation. Journal of the Bombay Natural History Society (JBNHS), 109(1&2), 60-71.

28. Lopes, M. T., Gioppo, L. L., Higushi, T. T., Kaestner, C. A., Silla Jr, C. N., & Koerich, A. L. (2011, December). Automatic bird species identification for large number of species. In 2011 IEEE International Symposium on Multimedia (pp. 117-122). IEEE.

29. Marck, A., Vortman, Y., Kolodny, O., & Lavner, Y. (2022). Identification, analysis and characterization of base units of bird vocal communication: The white spectacled bulbul (Pycnonotus xanthopygos) as a case study. Frontiers in Behavioral Neuroscience, 15, 812939.

30. Moss, S. (2003). The garden bird handbook: how to attract, identify and watch the birds in your garden. New Holland.

31. Narayana, B. L., Swamy, K., Surender, G., & Rao, V. V. (2017). An Observation on Parenthood of Red-vented Bulbul. Ambient Science, Vol. 4(2); 40-41 DOI:10.21276/ambi.2017.04.2.nn03

32. Neal, L., Briggs, F., Raich, R., & Fern, X. Z. (2011). Time-frequency segmentation of bird song in noisy acoustic environments. In 2011 ieee international conference on acoustics, speech and signal processing (icassp) (pp. 2012-2015). IEEE.

33. Nowicki, S. (1987). Vocal tract resonances in oscine bird sound production: evidence from birdsongs in a helium atmosphere. Nature, 325(6099), 53-55.

34. Odom, K. J., & Benedict, L. (2018). A call to document female bird songs: Applications for diverse fields. The Auk: Ornithological Advances, 135(2), 314-325.

35. Osmun, A. E., & Mennill, D. J. (2011). Acoustic monitoring reveals congruent patterns of territorial singing behaviour in male and female tropical wrens. Ethology, 117(5), 385-394.

36. Pahuja, R., & Kumar, A. (2021). Sound-spectrogram based automatic bird species recognition using MLP classifier. Applied Acoustics, 180, 108077.

37. Pérez‐Granados, C. & Traba, J. (2021) Estimating bird density using passive acoustic monitoring: a review of methods and suggestions for further research. Ibis, 163(3), 765-783.

38. Podos, J., Moseley, D.L., 2017. Vocal communication in birds. In: Reference Module in Neuroscience and Biobehavioral Psychology. Elsevier Inc, pp. 389–396.

39. Ramashini, M., Abas, P. E., Mohanchandra, K., & De Silva, L. C. (2022). Robust cepstral feature for bird sound classification. International Journal of Electrical and Computer Engineering, 12(2), 1477.

40. Riebel, K. (2009). Song and female mate choice in zebra finches: a review. Advances in the Study of Behavior, 40, 197-238.

41. Rodríguez-Saltos, C. A. (2017). To become senders, songbirds must be receivers first. Integrative and Comparative Biology, 57(4), 910-919.

42. Saxena, S., Thorat, S., Jain, P., Mohanty, R., & Baraskar, T. (2022). Analysis of object detection techniques for bird species identification. In Journal of Physics: Conference Series (Vol. 2325, No. 1, p. 012054). IOP Publishing.

43. Searcy, W. A., Nowicki, S., & Hughes, M. (1997). The response of male and female song sparrows to geographic variation in song. The Condor, 99(3), 651-657.

44. Sivakumaran, N., & Thiyagesan, K. (2003). Population, diurnal activity patterns and feeding ecology of the Indian Roller Coracias benghalensis (Linnaeus, 1758). ZOOS'PRINT JOURNAL, 18(5), 1091-1095.

45. Sotthibandhu, S. (2003). Territorial defense of the red-whiskered bulbul, Pycnonotus jocosus (Pycnonotidae), in a semi-wild habitat of the bird farm. Songklanakarin J. Sci. Technol, 25(5), 553-563.

46. Stein Are Saether (2002) “Female calls in lek-mating birds: indirect mate choice, female competition for mates, or direct mate choice” Department of zoology, Norwegian university of science and technology, N-7491 Trondheim, Norway, Behavioral Ecology Vol. 13 No. 3: 344-352.

47. Stowell, D., & Plumbley, M. D. (2014). Large‐scale analysis of frequency modulation in birdsong data bases. Methods in Ecology and Evolution, 5(9), 901-912.

48. Sugai, L. S. M., Silva, T. S. F., Ribeiro Jr, J. W., & Llusia, D. (2019). Terrestrial passive acoustic monitoring: review and perspectives. BioScience, 69(1), 15-25.

49. Thierry Aubin, Nicolas Mathevon, Maria Lusia Da Silva, Jacques M. E. Vielliaed and Fredric Sebe (2004). “How a simple and stereotyped acoustic signal transmits individual information: the song of the White-browed Warbler Basileuterus leucoblepharus”. Anais da Academia Brasileia de Ciencias, 76(2): 335-334 (Annals of the Brazilian Academy of Sciences).

50. Thompson, J. V., Jeanne, J. M., & Gentner, T. Q. (2013). Local inhibition modulates learning-dependent song encoding in the songbird auditory cortex. Journal of neurophysiology, 109(3), 721-733.

51. Gentner, T. Q., & Hulse, S. H. (2000). Female European starling preference and choice for variation in conspecific male song. Animal behaviour, 59(2), 443-458.

52. Tsai, W. H., Xu, Y. Y., & Lin, W. C. (2014). Bird Species Identification Based on Timbre and Pitch Features of Their Vocalization. J. Inf. Sci. Eng., 30(6), 1927-1944.

53. Tyagi, H., Hegde, R. M., Murthy, H. A., & Prabhakar, A. (2006). Automatic identification of bird calls using spectral ensemble average voice prints. In 2006 14th European Signal Processing Conference (pp. 1-5). IEEE.

54. Yambem, S. D., Chorol, S., & Jain, M. (2021). More than just babble: functional and structural complexity of vocalizations of Jungle Babbler. Behavioral Ecology and Sociobiology, 75(8), 118.

55. Zhang, C., Chen, Y., Hao, Z., & Gao, X. (2022). An Efficient Time-Domain End-to-End Single-Channel Bird Sound Separation Network. Animals, 12(22), 3117.

Downloads

Published

2025-08-04

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.